收藏 分销(赏)

雨中行走问题.ppt

上传人:胜**** 文档编号:838390 上传时间:2024-03-27 格式:PPT 页数:28 大小:1.19MB
下载 相关 举报
雨中行走问题.ppt_第1页
第1页 / 共28页
雨中行走问题.ppt_第2页
第2页 / 共28页
雨中行走问题.ppt_第3页
第3页 / 共28页
雨中行走问题.ppt_第4页
第4页 / 共28页
雨中行走问题.ppt_第5页
第5页 / 共28页
点击查看更多>>
资源描述

1、一一 雨中行走问题雨中行走问题一个雨天,你有件急事需要从家中到学校去,学校离家不远,仅一公里,况且事情紧急,你来不及花时间去翻找雨具,决定碰一下运气,顶着雨去学校。假设刚刚出发雨就大了,但你不打算再回去了,一路上,你将被大雨淋湿。一个似乎很简单的事情是你应该在雨中尽可能地快走,以减少雨淋的时间。但如果考虑到降雨方向的变化,在全部距离上尽力地快跑不一定是最好的策略。试建立数学模型来探讨如何在雨中行走才能减少淋雨的程度。1 建模准备建模目标:在给定的降雨条件下,设计一个雨中行走的策略,使得你被雨水淋湿的程度最小。主要因素:淋雨量,降雨的大小,降雨的方向(风),路程的远近,行走的速度2)降雨大小用降

2、雨强度 厘米/时来描述,降雨强度指单位 时间平面上的降下水的厚度。在这里可视其为一常量。3)风速保持不变。4)你一定常的速度 米/秒跑完全程 米。2 模型假设及符号说明1)把人体视为长方体,身高 米,宽度 米,厚度 米。淋雨总量用 升来记。3 模型建立与计算1)不考虑雨的方向,此时,你的前后左右和上方都将淋雨。淋雨的面积 雨中行走的时间 降雨强度模型中结论,结论,淋雨量与速度成反比。这也验证了尽可能快跑能减少淋雨量。从而可以计算被淋的雨水的总量为2.041(升)。经仔细分析,可知你在雨中只跑了2分47 秒,但被淋了2 升的雨水,大约有4 酒瓶的水量。这是不可思议的。表明:用此模型描述雨中行走的

3、淋雨量不符合实际。原因:不考虑降雨的方向的假设,使问题过于简化。2)考虑降雨方向。人前进的方向若记雨滴下落速度为 (米/秒)雨滴的密度为雨滴下落的反方向表示在一定的时刻在单位体积的空间内,由雨滴所占的空间的比例数,也称为降雨强度系数。所以,因为考虑了降雨的方向,淋湿的部位只有顶部和前面。分两部分计算淋雨量。顶部的淋雨量前表面淋雨量总淋雨量(基本模型)可以看出:淋雨量与降雨的方向和行走的速度有关。问题转化为给定 ,如何选择 使得 最小。情形1结果表明:淋雨量是速度的减函数,当速度尽可能大时淋雨量是速度的减函数,当速度尽可能大时淋雨量达到最小。淋雨量达到最小。假设你以6米/秒的速度在雨中猛跑,则计

4、算得情形2 结果表明:淋雨量是速度的减函数,当速度尽可能大时淋雨量是速度的减函数,当速度尽可能大时淋雨量达到最小。淋雨量达到最小。假设你以6米/秒的速度在雨中猛跑,则计算得情形3 此时,雨滴将从后面向你身上落下。出现这个矛盾的原因:我们给出的基本模型是针对雨从我们给出的基本模型是针对雨从你的前面落到身上情形你的前面落到身上情形。因此,对于这种情况要另行讨论。当行走速度慢于雨滴的水平运动速度,即这时,雨滴将淋在背上,而淋在背上的雨水量是淋雨总量为再次代如数据,得结果表明:当行走速度等于雨滴下落的水平速度时,淋当行走速度等于雨滴下落的水平速度时,淋雨量最小,仅仅被头顶上的雨水淋湿了。雨量最小,仅仅

5、被头顶上的雨水淋湿了。若雨滴是以 的角度落下,即雨滴以 的角从背后落下,你应该以此时,淋雨总量为这意味着你刚好跟着雨滴前进,前后都没淋雨。当行走速度快于雨滴的水平运动速度,即你不断地追赶雨滴,雨水将淋湿你的前胸。被淋得雨量是淋雨总量为4 结论若雨是迎着你前进的方向向你落下,这时的策略很简单,应以最大的速度向前跑;若雨是从你的背后落下,你应控制你在雨中的行走速度,让它刚好等于落雨速度的水平分量。5 注意 关于模型的检验,请大家观察、体会并验证。雨中行走问题的建模过程又一次使我们看到模型假设的重 要性,模型的阶段适应性。二二 席位分配问题席位分配问题 某校有200名学生,甲系100名,乙系60名,

6、丙系40名,若学生代表会议设20个席位,问三系各有多少个席位?按惯例分配席位方案,即按人数比例分配原则 表示某单位的席位数 表示某单位的人数 表示总人数 表示总席位数1 问题的提出问题的提出2020个席位的分配结果个席位的分配结果系别人数所占比例分配方案席位数甲100100/200(50/100)20=10乙6060/200(30/100)20=6丙40 40/200(20/100)20=4现丙系有6名学生分别转到甲、乙系各3名。系别人数所占比例分配方案席位数甲103103/200=51.5%51.5%20=10.3乙6363/200=31.5%31.5%20=6.3丙34 34/200=17

7、.0%17.0%20=3.410641064现象现象1 1 丙系虽少了丙系虽少了6 6人,但席位仍为人,但席位仍为4 4个。(不公平!)个。(不公平!)为了在表决提案时可能出现10:10的平局,再设一个席位。2121个席位的分配结果个席位的分配结果系别人数所占比例分配方案席位数甲103103/200=51.5%51.5%21=10.815乙6363/200=31.5%31.5%21=6.615丙34 34/200=17.0%17.0%21=3.5701173现象现象2 2 总席位增加一席,丙系反而减少一席。(不公平!)总席位增加一席,丙系反而减少一席。(不公平!)惯例分配方法惯例分配方法:按比

8、例分配完取整数的名额后,剩下的名额按比例分配完取整数的名额后,剩下的名额按惯例分给小数部分较大者。按惯例分给小数部分较大者。存在不公平现象,能否给出更公平的分配席位的方案?存在不公平现象,能否给出更公平的分配席位的方案?2 建模分析建模分析目标:建立公平的分配方案。反映公平分配的数量指标可用每席位代表的人数每席位代表的人数来衡量。系别 人数 席位数每席位代表的人数公平程度甲1031031010103/10=10.3103/10=10.3中中乙63636 663/6=10.563/6=10.5差差丙34 34 4 434/4=8.534/4=8.5好好系别人数席位数每席位代表的人数甲100100

9、1010100/10=10100/10=10乙60606 660/6=1060/6=10丙40 40 4 440/4=1040/4=10系别人数席位数每席位代表的人数公平程度甲1031031111103/11=9.36103/11=9.36中中乙63637 763/7=963/7=9好好丙34 34 3 334/3=11.3334/3=11.33差差一般地,单位人数席位数每席位代表的人数A AB B当席位分配公平但通常不一定相等,席位分配的不公平程度用以下标准来判断。此值越小分配越趋于公平,但这并不是一个好的衡量标准。单位人数p席位数n每席位代表的人数绝对不公平标准A120101212-10=

10、2B1001010C102010102102-100=2D100010100C,DC,D的不公平程度大为改善!2)相对不公平表示每个席位代表的人数,总人数一定时,此值越大,代表的人数就越多,分配的席位就越少。则A吃亏,或对A 是不公平的。定义“相对不公平”对A 的相对不公平值;同理,可定义对B 的相对不公平值为:对B 的相对不公平值;建立了衡量分配不公平程度的数量指标制定席位分配方案的原则是使它们的尽可能的小。3 3 建模建模若A、B两方已占有席位数为用相对不公平值讨论当席位增加1 个时,应该给A 还是B 方。不失一般性,有下面三种情形。情形情形1 1说明即使给A 单位增加1席,仍对A 不公平

11、,所增这一席必须给A单位。情形情形2 2说明当对A 不公平时,给A 单位增加1席,对B 又不公平。计算对B 的相对不公平值情形情形3 3说明当对A 不公平时,给B 单位增加1席,对A 不公平。计算对A 的相对不公平值则这一席位给A 单位,否则给B 单位。结论结论:当(当(*)成立时,增加的一个席位应分配给)成立时,增加的一个席位应分配给A A 单位,单位,反之,应分配给反之,应分配给 B B 单位。单位。记记则增加的一个席位应分配给则增加的一个席位应分配给QQ值值 较大的一方。较大的一方。这样的分配席位的方法称为QQ值方法值方法。若A、B两方已占有席位数为4 4 推广推广 有m 方分配席位的情

12、况设方人数为,已占有个席位,当总席位增加1 席时,计算则1 席应分给Q值最大的一方。从开始,即每方至少应得到以1 席,(如果有一方1 席也分不到,则把它排除在外。)5 举例举例甲、乙、丙三系各有人数103,63,34,有21个席位,如何分配?按按Q值方法:值方法:甲1乙1丙145678910111213141516 1718192021甲:11,乙:6,丙:4练习练习学校共1000学生,235人住在A楼,333人住在B楼,432住在C楼。学生要组织一个10人委员会,试用惯例分配方法,dHondt方法和Q值方法分配各楼的委员数,并比较结果。dHondt方法有k个单位,每单位的人数为 pi,总席位数为n。做法:用自然数1,2,3,分别除以每单位的人数,从所得的数中由大到小取前 n 个,(这n 个数来自各个单位人数用自然数相除的结果),这n 个数中哪个单位有几个所分席位就为几个。

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服