1、4 道路线形设计 1.4.1 道路路道路路线平面平面设计 l路路线平面平面线形的基本要素形的基本要素l圆曲曲线设计l缓和曲和曲线设计 l弯道超高弯道超高l弯道加弯道加宽学学习要点:要点:2.公路路公路路线平面平面设计应解决的解决的问题:正确选择平曲线半径合理解决直线与曲线的衔接适当设置弯道超高和加宽保证行车视距公路路线平面图的绘制4.1 路路线平面平面设计3.弯道超高弯道超高弯道加弯道加宽行行车视距距直直线与曲与曲线的的衔接接4.公路平面线形的要素由直直线、圆曲曲线(又称平面曲线)和缓和曲和曲线组成,如图4-1。图4-1 4-1 路路线平面平面线形形4.1.1 平面平面线形要素形要素 5.直直
2、线的特点的特点路线短捷,缩短里程,行车方向明显;线形简单,易测设;长直线、行车安全性差;直线只满足两个控制点的要求,难以与地形及周围环境协调。直直线最最最最长长、短直、短直、短直、短直线线限制限制限制限制标准规定:直线的最大与最小长度应有所限制。一条公路的直线与曲线的长度设计应合理。合理利用地形和避免采用长直线。6.4-2平面平面平面平面线线形的形的形的形的组组合与合与合与合与衔衔接接接接7.圆曲曲线,是适应地形曲折变化和其他自然条件影响而设置的。圆曲线具有易与地形相适应、可循性好、线形美观、易于测设等优点,使用十分普遍。一般情况下,应设置尽可能大的半径。缓和和曲曲线,当汽车从直线驶入曲线时,
3、为克服离心力,必须在曲线与直线之间设缓和曲线。8.公路路线由于受地形、地质及其他各种条件的限制,在平面上往往出现转折。为了保证汽车从一条直线顺适地转入另一条直线,在转折处需要插入圆曲线过渡,以提高车辆行驶的安全和舒适程度。4.1.2 圆曲曲线设计 由于圆曲线是设在平面上的曲线,所以这段圆曲线又称作为公路平曲线。9.4.1.2.1 圆曲曲线各要素的各要素的计算算切线长:外 矩:曲线长:超 距:图4-3 4-3 圆曲曲线要素要素计算算10.4.1.2.1 圆曲曲线各要素的各要素的计算算图4-3 4-3 圆曲曲线要素要素计算算曲曲线主点里程主点里程桩号号计算:算:计算基点为交点里程交点里程桩号号,记
4、为JD。11.例例题4.1:圆曲曲线各要素的各要素的计算算如果测得公路平曲线的转角=32,交点的里程JD=K5+200,拟定圆曲线半径R=600m,求圆曲线几何要素及主要点桩里程。解:解:1)计算算圆曲曲线几何要素:几何要素:12.圆曲线起点桩号:ZY=JD-T=K5+200-172.05=K5+27.95圆曲线终点桩号:YZ=ZY+L=K5+27.95+335.09=K5+363.04圆曲线中点桩号:QZ=YZ-L/2=K5+363.04-335.09/2=K5+195.49验算:JD=QZ+(2T-L)/2=K5+195.49+(2*172.05-335.09)/2=K5+2002)计算主
5、点算主点桩里程:里程:13.4.1.2.2 汽汽车在弯道上行在弯道上行驶时力的平衡力的平衡 汽车在曲线上行驶时,由于惯性而产生离心力,离心力的大小与汽车的质量成正比,与曲线半径成反比。其计算公式为式中:F离心力,N;G汽车重量,N;v汽车行驶速度,m/s;R曲线半径,m;g重力加速度,9.81m/s2。14.为了减少离心力的作用,把曲线上的路面做成外侧高、内侧低的单向横坡的形式,称为弯道超高。汽车行驶在具有超高的曲线上,如图4-4所示:XY图4-4 4-4 汽汽车在弯道上行使力的平衡在弯道上行使力的平衡15.横向力X与竖向力Y分别为 由于路面横坡不大,即 很小,可以认为:sin tan =ib
6、,cos =1。ib 是路面的超高横坡度,于是作用于汽车上的横向力X=FcosGsin,当当路路面面有有超超高高时取取负号号,若若没没有有超超高高在在外外侧车道道时则用用正正号号16.横向力反映汽车转弯时在横向上受力大小,但并不完全反映汽车转弯时稳定程度。现用横向力系数来评价汽车的稳定程度:即单位车重所具有的横向力大小称为横向力系数,将车速化为V(km/h),则 其中ib为路面超高横坡度。式(4.2)表达了横向力系数与车速、曲线半径和超高之间的关系。愈大,汽车曲线上稳定性就愈小。(4.2)17.在指定的设计车速下,极限最小半径Rmin决定于可以容许的最大横向系数 和该曲线的最大超高度4.1.2
7、.3 设超高的平曲超高的平曲线半径半径式中:v计算行车速度,km/h;横向力系数;ib路面超高横坡度,%。由公式(4.2)得到超高的平曲线半径公式最小半径最小半径18.对于 和 做如下讨论:从从抵抵抗抗横横向向滑滑移移条条件件分分析析。在大多数情况下,汽车在产生横向倾覆前,先要发生侧向滑移。因此,只要保证汽车不侧向滑移,即可保证汽车横向不倾覆。保证汽车不横向滑移的必要条件为 。当 很小时,YG,则,式中:路面与轮胎间的横向摩擦系数。(1 1)关于)关于 。横向力系数 值的选用不仅要考虑汽车在弯道上行驶时行车的稳定性,还要考虑乘客的舒适程度,以及汽车燃料和轮胎消耗的情况。19.横向摩擦系数 与纵
8、向摩擦系数 间的关系大约为 值取决于路面的潮湿程度、车速的大小和路面类型等。在确定 值时,一般按最不利状态即路面为冰滑情况下决定。此时 =0.20.3,则 =0.6 =0.60.25=0.15 因因为系系数数0 0在在数数值方方面面等等于于横横向向力力系系数数,所所以以此此时的的横横向向力力系系数数0.15。20.从乘坐的感受情况分析从乘坐的感受情况分析汽车在行驶中不应使司机和乘客感到紧张和不舒服,根据试验,乘客随 值的增大其心理反应如下:当 0.10时,不会感到有曲线存在,很平稳;当 =0.15时,稍感到有曲线存在,尚平稳;当 =0.20时,已感到有曲线存在,稍感不稳定;当 =0.35时,感
9、到有曲线存在,不太稳定;当 0.40时,非常不稳定,站立不住,乘客有倾覆的危险感。由此可知,从乘客的舒适角度考虑,横向力系数不宜超过0.150.20,一般以一般以为0.15作作为最大控制数最大控制数值。21.根据试验分析,汽车在弯道上行驶时,值的大小对汽车的燃料消耗和轮胎磨损有很大影响,其增加百分率如下:当 =0.10时,燃料消耗增加10%,轮胎磨损增加1.2倍;当 =0.15时,燃料消耗增加15%,轮胎磨损增加2倍;当 =0.20时,燃料消耗增加20%,轮胎磨损增加2.9倍;从燃料消耗和从燃料消耗和轮胎磨胎磨损分析分析 因此,从汽车运营经济出发,横横向向力力系系数数值也也不不宜宜超超过0.1
10、00.15为好。22.从行从行车速度情况分析速度情况分析 由于公路的设计速度是线形设计的主要控制指标,所以从行车速度情况去研究横向力系数 的最大容许值时,就需要考虑路面条件、行车舒适性以及轮胎状况等。从图4-5可知,横向力系数的容许值是随着设计速度的增加而减少。横向力系数一般不超一般不超过0.16。0.180.160.140.120.10020120 14040 60 80 100v/(km/h)美国日本德国图4-5设计车速与横向力系数关系23.(2 2)最大超高率)最大超高率 汽车以一定的设计速度在曲线上行驶的稳定性是由路路面面超超高高横横坡坡度度和路路面面与与轮胎胎之之间横横向向附附着着力
11、力共同保证的。若取得较大的向心力来平衡离心力,就需较大的超高度ib,以保证行车的稳定性。但是,当ib很大时,行车速度低于设计速度或因故停车时,汽车由于重力作用,会有向路面内侧下滑的倾向,特别是当冬季路面冰冻或雨季路面泥泞湿就更危险。因此,ib的容许值应依据道路所在地区的气候条件、地形等因素来决定。24.为了保证低速车在恶劣的气候条件下能安全行驶不致有下滑的危险性,则超高的最大容许值ib必须满足以下条件。即 式中:一年中气候恶劣季节,轮胎与路面之间的横向附着系数。从行车安全考虑,我国无论北方地区还是南方地区,对超超高高横横坡坡度的最大容度的最大容许值均均应不超不超过6%为准准。25.4.1.2.
12、4 不不设超高的平曲超高的平曲线半径半径 将不设超高也能保证行车安全和舒适的平曲线半径的最低限度值称为不设超高的平曲线半径。不设超高的曲线半径是按汽车在弯道外侧行驶来计算的:式中:V设计车速;u横向力系数;i1路拱横坡度,%。不设超高的最小半径,规程中是以u=0.07,i1=1.5%2%计算求得的。各级道路的平曲线半径规定见表4-1。26.27.例例1 某平原微丘区一级公路,V=50km/h,路面为碎石土路,问该级公路不设超高的平曲线最小半径为多少?解:取横向力系数u=0.07,路拱坡度i1=1.5%,则规程中规定R为500m。28.例例2 2 某山岭区二级公路,V=20km/h,问该路设置超
13、高情况下极限最小半径为多少?解:设横向力系数u=0.15,超高横坡度ib=0.06,则规程中规定R为15m。29.一级线及平原微丘区二级线不得低于3s的设计车速的行驶距离;山岭重丘区二级线不得低于2.5s的设计车速的行驶距离。4.1.2.5 平曲平曲线最小最小长度度规程中,各级道路的圆曲线最小长度:汽车在曲线上行驶,如果曲线短,驾驶员要频繁地进行正反两个方向操纵方向盘,一是驾驶员疲劳,二是不安全,三是乘客不舒服。因此,为了提高公路使用质量和减轻驾驶员的疲劳程度,应尽量设置较长曲线。30.4.1.3 弯道超高弯道超高4.1.3.1 弯道超高横坡度的确定弯道超高横坡度的确定 在弯道设计时,当平曲线
14、半径小于不设超高的半径时,为使汽车以计算行车速度行驶时所产生的离心力得以克服,将车道外侧升高构成与内侧车道同坡度的单坡横断面,此种设置称为超高。图4-6 4-6 弯道超高弯道超高31.计算超高横坡度ib时,在设计车速一定的条件下,取用变动的横向力系数u,其变动范围为0.07-0.18(不不设超超高高半半径径至至最最小小半半径径的的u值)。并假定u与ib成正比例增减,这样ib值随变动的u计算,并随R的增大而减少(见表4-2)。超高横坡度可由(4.2)式求得:32.33.4.1.3.2 超高构成超高构成 从直线上的不设超高过渡到圆曲线上的全超高,有两种构成方式,即绕未加未加宽前的路面内前的路面内边
15、缘旋旋转和绕线路中心路中心线旋旋转。如图4-7。34.4.1.3.3 超高超高缓和段和段 图中超高缓和段长度用Lc表示,i1是路拱横坡度,ib是超高横坡度,-断面是缓和段的起点,-断面是缓和段的终点。缓和段的长度根据其构成方法的不同,计算结果也不同。从直线上的路拱双坡横断面变为曲线段的具有全超高的单坡横断面的渐变过程,这一变化段称为超高缓和段(见图4-6)。图4-6 4-6 弯道超高弯道超高35.式中:B路面宽度,m;ib超高横坡度,%;q超高缓和率,是代表路面外侧边缘超高缓和段的纵坡与路线设计纵坡的差值。(在平原微丘区为1%,山岭区一般为2%)边轴旋转法:当超高横坡度的设置为绕路面未加宽前的
16、内侧边缘旋转时(如图4-8所示),其超高缓和段长度36.中轴旋转法:当超高横坡度绕路面中心线旋转时(如图4-9所示),其缓和段长度LC为i137.汽车在弯道上行驶时,各车轮行驶轨迹半径是不同的,后轮轴下的内侧车轮所行驶的半径最小,前轮轴上的外侧车轮所行驶的半径最大。为适应汽车在平曲线上行驶时后轮轨迹偏向曲线内侧的需要,在平曲线内侧相应增加的路面、路基宽度称为曲线加宽(又称弯道加弯道加宽)。4.1.3.4 弯道加弯道加宽38.加宽目的:避免汽车在弯道上行使时不侵占相邻车道。加宽条件:R250m曲线路段。加宽位置:通常在弯道内侧。加加宽示意示意图39.图4-10 4-10 单辆车在弯道上行使路面在
17、弯道上行使路面宽单辆汽汽车在弯道上的加在弯道上的加宽 如将上述公式进行移项平方,得因为e2与2Re相比很小,可忽略不计,上式可写成:式中:R圆曲线半径;L汽车保险杠到后轴的距离。(一)加加宽值计算算40.设载重汽车车头中点A行驶在弯道上中心线上,由几何关系可得到载重汽车的加宽值e1为单辆汽汽车带挂挂车加加宽计算算长货挂车的加宽值e2为 图4-11 4-11 带挂挂车曲曲线加加宽e2e141.计算载重汽车拖挂一辆挂车时每一条单车道的弯道加宽值为因为 R=R-e1,e1值很小,故可取R=R所以,每条车道上路面加宽值的计算公式为:式中:e1载重汽车的加宽值,m e2挂车的加宽值,m LT载重汽车前保
18、险杠到后轴的距离,m Ln载重车后轴到挂车车轴的距离,m R行车道中心线平曲线半径,m R载重车后轴中心点的半径,m42.(1)定义:弯道上行车道加宽是在曲线范围内设置的,为了使直线路段上的不加宽逐渐变化到圆曲线上的全加宽,需要有一个渐变的过渡段,这一渐变的过渡段为加宽缓和段。(二)加(二)加宽缓和段和段:(2)加宽缓和段的长度:当曲线设置超高时,加宽缓和段长度与超高缓和段长度相等;不设超高时,加宽缓和段长度,一般情况下取10m,困难情况下不小于5m。(3)加宽位置:根据行车的要求,加宽应设在弯道内侧,并且路基与路面同时加宽。43.讨 论 时 间44.课后思考题1、公路平面设计的主要内容有哪些?2、什么是弯道超高和加宽?3、什么是超高缓和段和加宽缓和段?4、对公路不设超高或设超高的平曲线半径计算45.