收藏 分销(赏)

各地中考数学.doc

上传人:仙人****88 文档编号:7983227 上传时间:2025-01-29 格式:DOC 页数:11 大小:581.50KB
下载 相关 举报
各地中考数学.doc_第1页
第1页 / 共11页
各地中考数学.doc_第2页
第2页 / 共11页
点击查看更多>>
资源描述
25.(本题12分)如图①,在平面直角坐标系中,Rt△AOB≌Rt△CDA,且A(-1,0)、B(0,2),抛物线y=ax2+ax-2经过点C。 (1)求抛物线的解析式; (2)在抛物线(对称轴的右侧)上是否存在两点P、Q,使四边形ABPQ是正方形?若存在,求点P、Q的坐标,若不存在,请说明理由; (3)如图②,E为BC延长线上一动点,过A、B、E三点作⊙O’,连结AE,在⊙O’上另有一点F,且AF=AE,AF交BC于点G,连结BF。下列结论:①BE+BF的值不变;②,其中有且只有一个成立,请你判断哪一个结论成立,并证明成立的结论。 O x y B F A E C O’ G (第25题图②) O (第25题图①) A B C D x y 24.(本小题满分14分) 如图12,边长为1的正方形ABCD被两条与边平行的线段EF、GH分割为四个小矩形,EF与GH交于点P。 (1)若AG=AE,证明:AF=AH; (2)若∠FAH=45°,证明:AG+AE=FH; (3)若RtΔGBF的周长为1,求矩形EPHD的面积。 25.(本小题满分14分) 如图13,二次函数的图象与x轴交于A、B两点,与y轴交于点C(0,-1),ΔABC的面积为。 (1)求该二次函数的关系式; (2)过y轴上的一点M(0,m)作y轴的垂线,若该垂线与ΔABC的外接圆有公共点,求m的取值范围; (3)在该二次函数的图象上是否存在点D,使四边形ABCD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由。 28.矩形在平面直角坐标系中位置如图13所示,两点的坐标分别为,,直线与边相交于点. (1)求点的坐标; (2)若抛物线经过点,试确定此抛物线的表达式; (3)设(2)中的抛物线的对称轴与直线交于点,点为对称轴上一动点,以为顶点的三角形与相似,求符合条件的点的坐标. y O C D B 6 A x 图13 23.(8分)如图,反比例函数y=(x>0)的图象与一次函数y=-x+的图象交于A、B两点,点C的坐标为(1,),连接AC,AC∥y轴. (1)求反比例函数的解析式及点B的坐标; (2)现有一个直角三角板,让它的直角顶点P在反比例函数图象上A、B之间的部分滑动(不与A、B重合),两直角边始终分别平行于x轴、y轴,且与线段AB交于M、N两点,试判断P点在滑动过程中△PMN是否与△CBA总相似?简要说明判断理由. A B O C D P Q 24.(8分)如图,在直角梯形ABCD中,AD∥BC,∠ABC=90º,AB=12cm,AD=8cm,BC=22cm,AB为⊙O的直径,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以2cm/s的速度运动,P、Q分别从点A、C同时出发,当其中一点到达端点时,另一个动点也随之停止运动.设运动时间为t(s). (1)当t为何值时,四边形PQCD为平行四边形? (2)当t为何值时,PQ与⊙O相切? 21. 小明用下面的方法求出方程的解,请你仿照他的方法求出下面另外两个方程的解,并把你的解答过程填写在下面的表格中. 方程 换元法得新方程  解新方程 检验 求原方程的解                                24.已知:如图,⊙O的直径AB与弦CD相交于E,弧BC=弧BD,⊙O的切线BF与弦AD的延长线相交于点F. (1)求证:CD∥BF. (2)连结BC,若⊙O的半径为4,cos∠BCD=,求线段AD、CD的长. 24.(本小题满分14分) 解:(1) 易证ΔABF≌ΔADH,所以AF=AH (2) 如图,将ΔADH绕点A顺时针旋转90度,如图,易证ΔAFH≌ΔAFM,得FH=MB+BF,即:FH=AG+AE (3) 设PE=x,PH=y,易得BG=1-x,BF=1-y,FG=x+y-1,由勾股定理,得(1-x)2+(1-y)2=(x+y-1)2, 化简得xy=0.5,所以矩形EPHD的面积为0.5. 25.(本小题满分14分) 解:(1)OC=1,所以,q=-1,又由面积知0.5OC×AB=,得AB=, 设A(a,0),B(b,0)AB=b-a==,解得p=,但p<0,所以p=。 所以解析式为: (2)令y=0,解方程得,得,所以A(,0),B(2,0),在直角三角形AOC 中可求得AC=,同样可求得BC=,,显然AC2+BC2=AB2,得三角形ABC是直角三角形。AB 为斜边,所以外接圆的直径为AB=,所以. (3)存在,AC⊥BC,①若以AC为底边,则BD//AC,易求AC的解析式为y=-2x-1,可设BD的解析式 为y=-2x+b,把B(2,0)代入得BD解析式为y=-2x+4,解方程组得D(,9) ②若以BC为底边,则BC//AD,易求BC的解析式为y=0.5x-1,可设AD的解析式为y=0.5x+b,把 A(,0)代入得AD解析式为y=0.5x+0.25,解方程组得D() 综上,所以存在两点:(,9)或()。 28.解:(1)点的坐标为. (2分) (2)抛物线的表达式为. (4分) y O C D B 6 A x A M P1 P2 (3)抛物线的对称轴与轴的交点符合条件. ∵, ∴. ∵, ∴. (6分) ∵抛物线的对称轴, ∴点的坐标为. (7分) 过点作的垂线交抛物线的对称轴于点. ∵对称轴平行于轴, ∴. ∵, ∴. (8分) ∴点也符合条件,. ∴, ∴. (9分) ∴. ∵点在第一象限, ∴点的坐标为, ∴符合条件的点有两个,分别是,. (11分) 23.(1)由得,代入反比例函数中,得 ∴反比例函数解析式为: 2分 解方程组由化简得: 所以 5分 (2)无论点在之间怎样滑动,与总能相似.因为两点纵坐标相等,所以轴. 又因为轴,所以为直角三角形. 同时也是直角三角形, 8分 (在理由中只要能说出轴,即可得分.) 24.(1)解:∵直角梯形 O A P D B Q C 当时,四边形 为平行四边形. 由题意可知: 当时,四边形为平行四边形. 3分 O A P D B Q C H E (2)解:设与相切于点 过点作垂足为 直角梯形 由题意可知: 为的直径, 为的切线 5分 在中, 即: 7分 因为在边运动的时间为秒 而 (舍去) 当秒时,与相切. 8分 21. 方程 换元法得新方程  解新方程 检验 求原方程的解                  24.解:(1)直径平分, . 1分 与相切,是的直径, . 2分 . 3分 (2)连结, 是的直径, , 在中, ,. . 5分 于, 在 ,. . 7分 直径平分,
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 考试专区 > 中考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服