1、利用二次函数进行方案设计在商业活动或生产活动过程中常常遇到最优化问题解决此类问题一般可借助二次函数以及二次函数的最大(小)值进行最优方案的选择或设计【例2】 (2011江津)在“五个重庆”建设中,为了提高市民的宜居环境,某区规划修建一个文化广场(平面图形如图所示),其中四边形ABCD是矩形,分别以AB,BC ,CD,DA边为直径向外作半圆,若整个广场的周长为628米,设矩形的边长ABy米,BCx米(注:取3.14)(1)试用含x的代数式表示y.(2)现计划在矩形ABCD区域上种植花草和铺设鹅卵石等,平均每平方米造价为428元,在四个半圆的区域上种植草坪及铺设花岗岩,平均每平方米造价为400元;
2、设该工程的总造价为w元,求w关于x的函数关系式若该工程政府投入1千万元,问能否完成该工程的建设任务?若能,请列出设计方案,若不能,请说明理由若该工程在政府投入1千万元的基础上,又增加企业募捐资金64.82万元,但要求矩形的边BC的长不超过AB长的三分之二,且建设广场恰好用完所有资金,问:能否完成该工程的建设任务?若能,请列出所有可能的设计方案,若不能,请说明理由分析:(1)根据圆周长列出关于x,y的等式;(2)根据三个区域的面积和价格标准,列出关于x的函数关系式;比较二次函数的最小值与1千万的大小,给出判断;根据“建设刚好把政府投入的1千万与企业募捐资金64.82万元刚好用完”列出相应的一元二
3、次方程,解出方程的根,根据长宽的要求进行取舍解:(1)由题意得yx628.3.14,3.14y3.14x628.xy200.则y200x.(2)w428xy400y22400x22428x(200x)4003.14(200x)244003.14x24200x240 000x12 560 000.仅靠政府投入的1千万元不能完成该工程的建设任务,其理由如下:由知w200(x100)21.056107107,所以不能由题意,得x23y,即x23(200x),解得x80.0x80.又根据题意,得w200(x100)21.0561071076.482105.整理,得(x100)2441,解得x179,x2121(不合题意,舍去)只 能取x79,则y20079121.设计的方案是:AB长为121米,BC长为79米,再分别以各边为直径向外作半圆方法归纳 利用二次函数解决方案设计问题一般地需要先建立二次函数解析式,然后根据求二次函数最值的方法,即当xb2a时,y有最大(小)值4acb24a求得最值最后 要结合问题情境确定方案注意有时确定最值时,需要考虑要在x的取值范围内