资源描述
2017年高三数学一轮复习圆锥曲线综合题(拔高题)
一.选择题(共15小题)
1.(2014•成都一模)已知椭圆C:+y2=1的右焦点为F,右准线为l,点A∈l,线段AF交C于点B,若=3,则||=( )
A.
B.
2
C.
D.
3
2.(2014•鄂尔多斯模拟)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k=( )
A.
B.
C.
D.
3.(2014•和平区模拟)在抛物线y=x2+ax﹣5(a≠0)上取横坐标为x1=﹣4,x2=2的两点,经过两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆5x2+5y2=36相切,则抛物线顶点的坐标为( )
A.
(﹣2,﹣9)
B.
(0,﹣5)
C.
(2,﹣9)
D.
(1,6)
4.(2014•焦作一模)已知椭圆(a>b>0)与双曲线(m>0,n>0)有相同的焦点(﹣c,0)和(c,0),若c是a、m的等比中项,n2是2m2与c2的等差中项,则椭圆的离心率是( )
A.
B.
C.
D.
5.(2014•焦作一模)已知点P是椭圆+=1(x≠0,y≠0)上的动点,F1,F2是椭圆的两个焦点,O是坐标原点,若M是∠F1PF2的角平分线上一点,且•=0,则||的取值范围是( )
A.
[0,3)
B.
(0,2)
C.
[2,3)
D.
[0,4]
6.(2014•北京模拟)已知椭圆的焦点为F1、F2,在长轴A1A2上任取一点M,过M作垂直于A1A2的直线交椭圆于P,则使得的M点的概率为( )
A.
B.
C.
D.
7.(2014•怀化三模)从(其中m,n∈{﹣1,2,3})所表示的圆锥曲线(椭圆、双曲线、抛物线)方程中任取一个,则此方程是焦点在x轴上的双曲线方程的概率为( )
A.
B.
C.
D.
8.(2014•重庆模拟)已知点F1,F2分别是双曲线的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A,B两点,若△ABF2是锐角三角形,则该双曲线离心率的取值范围是( )
A.
B.
C.
D.
9.(2014•黄冈模拟)已知点F是双曲线=1(a>0,b>0)的左焦点,点E是该双曲线的右顶点,过点F且垂直于x轴的直线与双曲线交于A、B两点,△ABE是锐角三角形,则该双曲线的离心率e的取值范围是( )
A.
(1,+∞)
B.
(1,2)
C.
(1,1+)
D.
(2,1+)
10.(2014•凉州区二模)已知双曲线(a>0,b>0)的左右焦点是F1,F2,设P是双曲线右支上一点,上的投影的大小恰好为且它们的夹角为,则双曲线的离心率e为( )
A.
B.
C.
D.
11.(2015•浙江一模)如图,F1、F2是双曲线的左、右焦点,过F1的直线l与C的左、右2个分支分别交于点A、B.若△ABF2为等边三角形,则双曲线的离心率为( )
A.
4
B.
C.
D.
12.(2014•河西区二模)双曲线的左、右焦点分别为F1、F2离心率为e.过F2的直线与双曲线的右支交于A、B两点,若△F1AB是以A为直角顶点的等腰直角三角形,则e2的值是( )
A.
1+2
B.
3+2
C.
4﹣2
D.
5﹣2
13.(2014•呼和浩特一模)若双曲线=1(a>0,b>0)的一个焦点到一条渐近线的距离等于焦距的,则该双曲线的离心率为( )
A.
B.
C.
D.
14.(2014•太原一模)点P在双曲线:(a>0,b>0)上,F1,F2是这条双曲线的两个焦点,∠F1PF2=90°,且△F1PF2的三条边长成等差数列,则此双曲线的离心率是( )
A.
2
B.
3
C.
4
D.
5
15.(2014•南昌模拟)已知双曲线的左右焦点分别为F1,F2,e为双曲线的离心率,P是双曲线右支上的点,△PF1F2的内切圆的圆心为I,过F2作直线PI的垂线,垂足为B,则OB=( )
A.
a
B.
b
C.
ea
D.
eb
二.填空题(共5小题)
16.(2014•江西一模)过双曲线=1的一个焦点F作一条渐近线的垂线,若垂足恰在线段OF(O为原点)的垂直平分线上,则双曲线的离心率为 _________ .
17.(2014•渭南二模)已知F1,F2是双曲线C:(a>0,b>0)的左、右焦点,过F1的直线l与C的左、右两支分别交于A,B两点.若|AB|:|BF2|:|AF2|=3:4:5,则双曲线的离心率为 _________ .
18.(2013•辽宁)已知椭圆的左焦点为F,C与过原点的直线相交于A,B两点,连接AF、BF,若|AB|=10,|AF|=6,cos∠ABF=,则C的离心率e= _________ .
19.(2013•江西)抛物线x2=2py(p>0)的焦点为F,其准线与双曲线=1相交于A,B两点,若△ABF为等边三角形,则p= _________ .
20.(2014•宜春模拟)已知抛物线C:y2=2px(p>0)的准线l,过M(1,0)且斜率为的直线与l相交于A,与C的一个交点为B,若,则p= _________ .
三.解答题(共10小题)
21.(2014•黄冈模拟)已知椭圆的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为,
(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.
22.(2014•南充模拟)设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB相交于点D,与椭圆相交于E、F两点.
(Ⅰ)若,求k的值;
(Ⅱ)求四边形AEBF面积的最大值.
23.(2014•福建)已知双曲线E:﹣=1(a>0,b>0)的两条渐近线分别为l1:y=2x,l2:y=﹣2x.
(1)求双曲线E的离心率;
(2)如图,O为坐标原点,动直线l分别交直线l1,l2于A,B两点(A,B分别在第一、第四象限),且△OAB的面积恒为8,试探究:是否存在总与直线l有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程,若不存在,说明理由.
24.(2014•福建模拟)已知椭圆的左、右焦点分别为F1、F2,短轴两个端点为A、B,且四边形F1AF2B是边长为2的正方形.
(1)求椭圆的方程;
(2)若C、D分别是椭圆长的左、右端点,动点M满足MD⊥CD,连接CM,交椭圆于点P.证明:为定值.
(3)在(2)的条件下,试问x轴上是否存异于点C的定点Q,使得以MP为直径的圆恒过直线DP、MQ的交点,若存在,求出点Q的坐标;若不存在,请说明理由.
25.(2014•宜春模拟)如图,已知圆G:x2+y2﹣2x﹣y=0,经过椭圆=1(a>b>0)的右焦点F及上顶点B,过圆外一点M(m,0)(m>a)倾斜角为的直线l交椭圆于C,D两点,
(1)求椭圆的方程;
(2)若右焦点F在以线段CD为直径的圆E的内部,求m的取值范围.
26.(2014•内江模拟)已知椭圆C:的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为.
(1)求椭圆C的方程;
(2)已知动直线y=k(x+1)与椭圆C相交于A、B两点.
①若线段AB中点的横坐标为,求斜率k的值;
②已知点,求证:为定值.
27.(2014•红桥区二模)已知A(﹣2,0),B(2,0)为椭圆C的左、右顶点,F为其右焦点,P是椭圆C上异于A,B的动点,且△APB面积的最大值为.
(Ⅰ)求椭圆C的方程及离心率;
(Ⅱ)直线AP与椭圆在点B处的切线交于点D,当直线AP绕点A转动时,试判断以BD为直径的圆与直线PF的位置关系,并加以证明.
28.(2014•南海区模拟)一动圆与圆外切,与圆内切.
(I)求动圆圆心M的轨迹L的方程.
(Ⅱ)设过圆心O1的直线l:x=my+1与轨迹L相交于A、B两点,请问△ABO2(O2为圆O2的圆心)的内切圆N的面积是否存在最大值?若存在,求出这个最大值及直线l的方程,若不存在,请说明理由.
29.(2014•通辽模拟)如图所示,F是抛物线y2=2px(p>0)的焦点,点A(4,2)为抛物线内一定点,点P为抛物线上一动点,|PA|+|PF|的最小值为8.
(1)求抛物线方程;
(2)若O为坐标原点,问是否存在点M,使过点M的动直线与抛物线交于B,C两点,且以BC为直径的圆恰过坐标原点,若存在,求出动点M的坐标;若不存在,请说明理由.
30.(2014•萧山区模拟)如图,O为坐标原点,点F为抛物线C1:x2=2py(p>0)的焦点,且抛物线C1上点P处的切线与圆C2:x2+y2=1相切于点Q.
(Ⅰ)当直线PQ的方程为x﹣y﹣=0时,求抛物线C1的方程;
(Ⅱ)当正数p变化时,记S1,S2分别为△FPQ,△FOQ的面积,求的最小值.
参考答案与试题解析
一.选择题(共15小题)
1.(2014•成都一模)已知椭圆C:+y2=1的右焦点为F,右准线为l,点A∈l,线段AF交C于点B,若=3,则||=( )
A.
B.
2
C.
D.
3
考点:
椭圆的简单性质.菁优网版权所有
专题:
计算题;压轴题.
分析:
过点B作BM⊥l于M,设右准线l与x轴的交点为N,根据椭圆的性质可知FN=1,由椭圆的第二定义可求得|BF|,进而根据若,求得|AF|.
解答:
解:过点B作BM⊥l于M,
并设右准线l与x轴的交点为N,易知FN=1.
由题意,故.
又由椭圆的第二定义,得
∴.
故选A
点评:
本小题考查椭圆的准线、向量的运用、椭圆的定义,属基础题.
2.(2014•鄂尔多斯模拟)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k=( )
A.
B.
C.
D.
考点:
抛物线的简单性质.菁优网版权所有
专题:
计算题;压轴题.
分析:
根据直线方程可知直线恒过定点,如图过A、B分别作AM⊥l于M,BN⊥l于N,根据|FA|=2|FB|,推断出|AM|=2|BN|,点B为AP的中点、连接OB,进而可知,进而推断出|OB|=|BF|,进而求得点B的横坐标,则点B的坐标可得,最后利用直线上的两点求得直线的斜率.
解答:
解:设抛物线C:y2=8x的准线为l:x=﹣2
直线y=k(x+2)(k>0)恒过定点P(﹣2,0)
如图过A、B分别作AM⊥l于M,BN⊥l于N,
由|FA|=2|FB|,则|AM|=2|BN|,
点B为AP的中点、连接OB,
则,
∴|OB|=|BF|,点B的横坐标为1,
故点B的坐标为,
故选D
点评:
本题主要考查了抛物线的简单性质.考查了对抛物线的基础知识的灵活运用.
3.(2014•和平区模拟)在抛物线y=x2+ax﹣5(a≠0)上取横坐标为x1=﹣4,x2=2的两点,经过两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆5x2+5y2=36相切,则抛物线顶点的坐标为( )
A.
(﹣2,﹣9)
B.
(0,﹣5)
C.
(2,﹣9)
D.
(1,6)
考点:
抛物线的应用.菁优网版权所有
专题:
计算题;压轴题.
分析:
求出两个点的坐标,利用两点连线的斜率公式求出割线的斜率;利用导数在切点处的值为切线的斜率求出切点坐标;利用直线方程的点斜式求出直线方程;利用直线与圆相切的条件求出a,求出抛物线的顶点坐标.
解答:
解:两点坐标为(﹣4,11﹣4a);(2,2a﹣1)
两点连线的斜率k=
对于y=x2+ax﹣5
y′=2x+a
∴2x+a=a﹣2解得x=﹣1
在抛物线上的切点为(﹣1,﹣a﹣4)
切线方程为(a﹣2)x﹣y﹣6=0
直线与圆相切,圆心(0,0)到直线的距离=圆半径
解得a=4或0(0舍去)
抛物线方程为y=x2+4x﹣5顶点坐标为(﹣2,﹣9)
故选A.
点评:
本题考查两点连线的斜率公式、考查导数在切点处的值为切线的斜率、考查直线与圆相切的充要条件是圆心到直线的距离等于半径.
4.(2014•焦作一模)已知椭圆(a>b>0)与双曲线(m>0,n>0)有相同的焦点(﹣c,0)和(c,0),若c是a、m的等比中项,n2是2m2与c2的等差中项,则椭圆的离心率是( )
A.
B.
C.
D.
考点:
椭圆的简单性质;等差数列的性质;等比数列的性质;圆锥曲线的共同特征.菁优网版权所有
专题:
计算题;压轴题.
分析:
根据是a、m的等比中项可得c2=am,根据椭圆与双曲线有相同的焦点可得a2+b2=m2+n2=c,根据n2是2m2与c2的等差中项可得2n2=2m2+c2,联立方程即可求得a和c的关系,进而求得离心率e.
解答:
解:由题意:
∴,
∴,∴a2=4c2,
∴.
故选D.
点评:
本题主要考查了椭圆的性质,属基础题.
5.(2014•焦作一模)已知点P是椭圆+=1(x≠0,y≠0)上的动点,F1,F2是椭圆的两个焦点,O是坐标原点,若M是∠F1PF2的角平分线上一点,且•=0,则||的取值范围是( )
A.
[0,3)
B.
(0,2)
C.
[2,3)
D.
[0,4]
考点:
椭圆的简单性质;椭圆的定义.菁优网版权所有
专题:
圆锥曲线的定义、性质与方程.
分析:
结合椭圆 =1的图象,当点P在椭圆与y轴交点处时,点M与原点O重合,此时|OM|取最小值0.
当点P在椭圆与x轴交点处时,点M与焦点F1重合,此时|OM|取最大值.由此能够得到|OM|的取值范围.
解答:
解:由椭圆 =1 的方程可得,c=.
由题意可得,当点P在椭圆与y轴交点处时,点M与原点O重合,此时|OM|取得最小值为0.
当点P在椭圆与x轴交点处时,点M与焦点F1重合,此时|OM|取得最大值 c=2.
∵xy≠0,∴|OM|的取值范围是(0,).
故选:B.
点评:
本题考查椭圆的定义、标准方程,以及简单性质的应用,结合图象解题,事半功倍.
6.(2014•北京模拟)已知椭圆的焦点为F1、F2,在长轴A1A2上任取一点M,过M作垂直于A1A2的直线交椭圆于P,则使得的M点的概率为( )
A.
B.
C.
D.
考点:
椭圆的应用;几何概型.菁优网版权所有
专题:
计算题;压轴题.
分析:
当∠F1PF2=90°时,P点坐标为,由,得∠F1PF2≥90°.故的M点的概率.
解答:
解:∵|A1A2|=2a=4,,
设P(x0,y0),
∴当∠F1PF2=90°时,,
解得,把代入椭圆得.
由,得∠F1PF2≥90°.
∴结合题设条件可知使得的M点的概率=.
故选C.
点评:
作出草图,数形结合,事半功倍.
7.(2014•怀化三模)从(其中m,n∈{﹣1,2,3})所表示的圆锥曲线(椭圆、双曲线、抛物线)方程中任取一个,则此方程是焦点在x轴上的双曲线方程的概率为( )
A.
B.
C.
D.
考点:
双曲线的标准方程;列举法计算基本事件数及事件发生的概率.菁优网版权所有
专题:
计算题;压轴题.
分析:
m和n的所有可能取值共有3×3=9个,其中有两种不符合题意,故共有7种,可一一列举,从中数出能使方程是焦点在x轴上的双曲线的选法,即m和n都为正的选法数,最后由古典概型的概率计算公式即可得其概率
解答:
解:设(m,n)表示m,n的取值组合,则取值的所有情况有(﹣1,﹣1),(2,﹣1),(2,2),(2,3),(3,﹣1),(3,2),(3,3)共7个,(注意(﹣1,2),(﹣1,3)不合题意)
其中能使方程是焦点在x轴上的双曲线的有:(2,2),(2,3),(3,2),(3,3)共4个
∴此方程是焦点在x轴上的双曲线方程的概率为
故选B
点评:
本题考查了古典概型概率的求法,椭圆、双曲线、抛物线的标准方程,列举法计数的技巧,准确计数是解决本题的关键
8.(2014•重庆模拟)已知点F1,F2分别是双曲线的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A,B两点,若△ABF2是锐角三角形,则该双曲线离心率的取值范围是( )
A.
B.
C.
D.
考点:
双曲线的简单性质.菁优网版权所有
专题:
计算题;压轴题.
分析:
先求出A,B两点的纵坐标,由△ABF2是锐角三角形知,tan∠AF2F1=<1,e2﹣2e﹣1<0,解不等式求出e 的范围.
解答:
解:在双曲线中,
令x=﹣c 得,y=±,∴A,B两点的纵坐标分别为±.
由△ABF2是锐角三角形知,∠AF2F1<,tan∠AF2F1=<tan=1,
∴<1,c2﹣2ac﹣a2<0,e2﹣2e﹣1<0,∴1﹣<e<1+.
又 e>1,∴1<e<1+,
故选D.
点评:
本题考查双曲线的标准方程,以及双曲线的简单性质的应用,判断∠AF2F1<,tan=<1,是解题的关键.
9.(2014•黄冈模拟)已知点F是双曲线=1(a>0,b>0)的左焦点,点E是该双曲线的右顶点,过点F且垂直于x轴的直线与双曲线交于A、B两点,△ABE是锐角三角形,则该双曲线的离心率e的取值范围是( )
A.
(1,+∞)
B.
(1,2)
C.
(1,1+)
D.
(2,1+)
考点:
双曲线的简单性质.菁优网版权所有
专题:
计算题;压轴题;圆锥曲线的定义、性质与方程.
分析:
根据双曲线的对称性,得到等腰△ABE中,∠AEB为锐角,可得|AF|<|EF|,将此式转化为关于a、c的不等式,化简整理即可得到该双曲线的离心率e的取值范围.
解答:
解:根据双曲线的对称性,得
△ABE中,|AE|=|BE|,
∴△ABE是锐角三角形,即∠AEB为锐角
由此可得Rt△AFE中,∠AEF<45°,得|AF|<|EF|
∵|AF|==,|EF|=a+c
∴<a+c,即2a2+ac﹣c2>0
两边都除以a2,得e2﹣e﹣2<0,解之得﹣1<e<2
∵双曲线的离心率e>1
∴该双曲线的离心率e的取值范围是(1,2)
故选:B
点评:
本题给出双曲线过一个焦点的通径与另一个顶点构成锐角三角形,求双曲线离心率的范围,着重考查了双曲线的标准方程与简单几何性质等知识,属于基础题.
10.(2014•凉州区二模)已知双曲线(a>0,b>0)的左右焦点是F1,F2,设P是双曲线右支上一点,上的投影的大小恰好为且它们的夹角为,则双曲线的离心率e为( )
A.
B.
C.
D.
考点:
双曲线的简单性质.菁优网版权所有
专题:
计算题;压轴题.
分析:
先根据上的投影的大小恰好为判断两向量互相垂直得到直角三角形,进而根据直角三角形中内角为,结合双曲线的定义建立等式求得a和c的关系式,最后根据离心率公式求得离心率e.
解答:
解:∵上的投影的大小恰好为
∴PF1⊥PF2
且它们的夹角为,∴,
∴在直角三角形PF1F2中,F1F2=2c,
∴PF2=c,PF1=
又根据双曲线的定义得:PF1﹣PF2=2a,
∴c﹣c=2a
∴
e=
故选C.
点评:
本题主要考查了双曲线的简单性质.考查了学生综合分析问题和运算的能力.解答关键是通过解三角形求得a,c的关系从而求出离心率.
11.(2015•浙江一模)如图,F1、F2是双曲线的左、右焦点,过F1的直线l与C的左、右2个分支分别交于点A、B.若△ABF2为等边三角形,则双曲线的离心率为( )
A.
4
B.
C.
D.
考点:
双曲线的简单性质.菁优网版权所有
专题:
压轴题;圆锥曲线的定义、性质与方程.
分析:
利用双曲线的定义可得可得|AF1|﹣|AF2|=2a,|BF2|﹣|BF1|=2a,利用等边三角形的定义可得:|AB|=|AF2|=|BF2|,.在△AF1F2中使用余弦定理可得
:=﹣,再利用离心率的计算公式即可得出.
解答:
解:∵△ABF2为等边三角形,∴|AB|=|AF2|=|BF2|,.
由双曲线的定义可得|AF1|﹣|AF2|=2a,∴|BF1|=2a.
又|BF2|﹣|BF1|=2a,∴|BF2|=4a.
∴|AF2|=4a,|AF1|=6a.
在△AF1F2中,由余弦定理可得:=﹣,
∴,化为c2=7a2,
∴=.
故选B.
点评:
熟练掌握双曲线的定义、余弦定理、离心率的计算公式是解题的关键.
12.(2014•河西区二模)双曲线的左、右焦点分别为F1、F2离心率为e.过F2的直线与双曲线的右支交于A、B两点,若△F1AB是以A为直角顶点的等腰直角三角形,则e2的值是( )
A.
1+2
B.
3+2
C.
4﹣2
D.
5﹣2
考点:
双曲线的简单性质.菁优网版权所有
专题:
计算题;压轴题.
分析:
设|AF1|=|AB|=m,计算出|AF2|=(1﹣)m,再利用勾股定理,即可建立a,c的关系,从而求出e2的值.
解答:
解:设|AF1|=|AB|=m,则|BF1|=m,|AF2|=m﹣2a,|BF2|=m﹣2a,
∵|AB|=|AF2|+|BF2|=m,
∴m﹣2a+m﹣2a=m,
∴4a=m,∴|AF2|=(1﹣)m,
∵△AF1F2为Rt三角形,∴|F1F2|2=|AF1|2+|AF2|2∴4c2=(﹣)m2,
∵4a=m
∴4c2=(﹣)×8a2,
∴e2=5﹣2
故选D.
点评:
本题考查双曲线的标准方程与性质,考查双曲线的定义,解题的关键是确定|AF2|,从而利用勾股定理求解.
13.(2014•呼和浩特一模)若双曲线=1(a>0,b>0)的一个焦点到一条渐近线的距离等于焦距的,则该双曲线的离心率为( )
A.
B.
C.
D.
考点:
双曲线的简单性质.菁优网版权所有
专题:
计算题;压轴题.
分析:
因为双曲线即关于两条坐标轴对称,又关于原点对称,所以任意一个焦点到两条渐近线的距离都相等,所以不妨利用点到直线的距离公式求(c,0)到y=x的距离,再令该距离等于焦距的,就可得到含b,c的齐次式,再把b用a,c表示,利用e=即可求出离心率.
解答:
解:双曲线的焦点坐标为(c,0)(﹣c,0),渐近线方程为y=±x
根据双曲线的对称性,任意一个焦点到两条渐近线的距离都相等,
求(c,0)到y=x的距离,d===b,
又∵焦点到一条渐近线的距离等于焦距的,
∴b=×2c,两边平方,得4b2=c2,即4(c2﹣a2)=c2,
∴3c2=4a2,,即e2=,e=
故选B
点评:
本题主要考查点到直线的距离公式的应用,以及双曲线离心率的求法,求离心率关键是找到a,c的齐次式.
14.(2014•太原一模)点P在双曲线:(a>0,b>0)上,F1,F2是这条双曲线的两个焦点,∠F1PF2=90°,且△F1PF2的三条边长成等差数列,则此双曲线的离心率是( )
A.
2
B.
3
C.
4
D.
5
考点:
双曲线的简单性质;等差数列的性质.菁优网版权所有
专题:
压轴题.
分析:
通过|PF2|,|PF1|,|F1F2|成等差数列,分别设为m﹣d,m,m+d,则由双曲线定义和勾股定理求出m=4d=8a,
c=,由此求得离心率的值.
解答:
解:因为△F1PF2的三条边长成等差数列,不妨设|PF2|,|PF1|,|F1F2|成等差数列,
分别设为m﹣d,m,m+d,
则由双曲线定义和勾股定理可知:m﹣(m﹣d)=2a,m+d=2c,(m﹣d)2+m2=(m+d)2,
解得m=4d=8a,c=,故离心率e===5,
故选D.
点评:
本题主要考查等差数列的定义和性质,以及双曲线的简单性质的应用,属于中档题.
15.(2014•南昌模拟)已知双曲线的左右焦点分别为F1,F2,e为双曲线的离心率,P是双曲线右支上的点,△PF1F2的内切圆的圆心为I,过F2作直线PI的垂线,垂足为B,则OB=( )
A.
a
B.
b
C.
ea
D.
eb
考点:
双曲线的简单性质.菁优网版权所有
专题:
计算题;压轴题;圆锥曲线的定义、性质与方程.
分析:
根据题意,利用切线长定理,再利用双曲线的定义,把|PF1|﹣|PF2|=2a,转化为|AF1|﹣|AF2|=2a,从而求得点H的横坐标.再在三角形PCF2中,由题意得,它是一个等腰三角形,从而在三角形F1CF2中,利用中位线定理得出OB,从而解决问题.
解答:
解:由题意知:F1(﹣c,0)、F2(c,0),内切圆与x轴的切点是点A,
∵|PF1|﹣|PF2|=2a,及圆的切线长定理知,
|AF1|﹣|AF2|=2a,设内切圆的圆心横坐标为x,
则|(x+c)﹣(c﹣x)|=2a
∴x=a.
在三角形PCF2中,由题意得,它是一个等腰三角形,PC=PF2,
∴在三角形F1CF2中,有:
OB=CF1=(PF1﹣PC)=(PF1﹣PF2)=×2a=a.
故选A.
点评:
本题考查双曲线的定义、切线长定理.解答的关键是充分利用三角形内心的性质.
二.填空题(共5小题)
16.(2014•江西一模)过双曲线=1的一个焦点F作一条渐近线的垂线,若垂足恰在线段OF(O为原点)的垂直平分线上,则双曲线的离心率为 .
考点:
双曲线的简单性质.菁优网版权所有
专题:
计算题;压轴题.
分析:
先设垂足为D,根据双曲线方程可求得其中一个渐近线和焦点F的坐标,进而得到D点坐标.表示直线DF的斜率与直线OD的斜率乘积为﹣1,进而得到a和b的关系,进而求得离心率.
解答:
解:设垂足为D,
根据双曲线方程可知其中一个渐近线为y=x,焦点为F(,0)
D点坐标(,)
∴kDF==﹣
∵OD⊥DF
∴kDF•kOD=﹣1
∴,即a=b
∴e===
故答案为
点评:
本题主要考查了双曲线的简单性质.要熟练掌握双曲线关于渐近线、焦点、标准方程等基本知识.
17.(2014•渭南二模)已知F1,F2是双曲线C:(a>0,b>0)的左、右焦点,过F1的直线l与C的左、右两支分别交于A,B两点.若|AB|:|BF2|:|AF2|=3:4:5,则双曲线的离心率为 .
考点:
双曲线的简单性质.菁优网版权所有
专题:
计算题;压轴题;圆锥曲线的定义、性质与方程.
分析:
根据双曲线的定义可求得a=1,∠ABF2=90°,再利用勾股定理可求得2c=|F1F2|,从而可求得双曲线的离心率.
解答:
解:∵|AB|:|BF2|:|AF2|=3:4:5,不妨令|AB|=3,|BF2|=4,|AF2|=5,
∵|AB|2+|BF2|2=|AF2|2,∴∠ABF2=90°,
又由双曲线的定义得:|BF1|﹣|BF2|=2a,|AF2|﹣|AF1|=2a,
∴|AF1|+3﹣4=5﹣|AF1|,∴|AF1|=3.
∴|BF1|﹣|BF2|=3+3﹣4=2a,
∴a=1.
在Rt△BF1F2中,|F1F2|2=|BF1|2+|BF2|2=62+42=52,
∵|F1F2|2=4c2,∴4c2=52,∴c=.
∴双曲线的离心率e==.
故答案为:.
点评:
本题考查双曲线的简单性质,考查转化思想与运算能力,求得a与c的值是关键,属于中档题.
18.(2013•辽宁)已知椭圆的左焦点为F,C与过原点的直线相交于A,B两点,连接AF、BF,若|AB|=10,|AF|=6,cos∠ABF=,则C的离心率e= .
考点:
椭圆的简单性质.菁优网版权所有
专题:
计算题;压轴题;圆锥曲线的定义、性质与方程.
分析:
设椭圆右焦点为F',连接AF'、BF',可得四边形AFBF'为平行四边形,得|AF|=|BF'|=6.△ABF中利用余弦定理算出|BF|=8,从而得到|AF|2+|BF|2=|AB|2,得∠AFB=90°,所以c=|OF|=|AB|=5.根据椭圆的定义得到2a=|BF|+|BF'|=14,得a=7,最后结合椭圆的离心率公式即可算出椭圆C的离心率.
解答:
解:设椭圆的右焦点为F',连接AF'、BF'
∵AB与FF'互相平分,∴四边形AFBF'为平行四边形,可得|AF|=|BF'|=6
∵△ABF中,|AB|=10,|AF|=6,cos∠ABF=,
∴由余弦定理|AF|2=|AB|2+|BF|2﹣2|AB|×|BF|cos∠ABF,
可得62=102+|BF|2﹣2×10×|BF|×,解之得|BF|=8
由此可得,2a=|BF|+|BF'|=14,得a=7
∵△ABF中,|AF|2+|BF|2=100=|AB|2
∴∠AFB=90°,可得|OF|=|AB|=5,即c=5
因此,椭圆C的离心率e==
故答案为:
点评:
本题给出椭圆经过中心的弦AB与左焦点构成三边分别为6、8、10的直角三角形,求椭圆的离心率.着重考查了椭圆的定义与标准方程、椭圆的简单几何性质等知识,属于中档题.
19.(2013•江西)抛物线x2=2py(p>0)的焦点为F,其准线与双曲线=1相交于A,B两点,若△ABF为等边三角形,则p= 6 .
考点:
抛物线的简单性质;双曲线的简单性质.菁优网版权所有
专题:
常规题型;压轴题;圆锥曲线的定义、性质与方程.
分析:
求出抛物线的焦点坐标,准线方程,然后求出抛物线的准线与双曲线的交点坐标,利用三角形是等边三角形求出p即可.
解答:
解:抛物线的焦点坐标为(0,),准线方程为:y=﹣,
准线方程与双曲线联立可得:,
解得x=±,
因为△ABF为等边三角形,所以,即p2=3x2,
即,解得p=6.
故答案为:6.
点评:
本题考查抛物线的简单性质,双曲线方程的应用,考查分析问题解决问题的能力以及计算能力.
20.(2014•宜春模拟)已知抛物线C:y2=2px(p>0)的准线l,过M(1,0)且斜率为的直线与l相交于A,与C的一个交点为B,若,则p= 2 .
考点:
抛物线的简单性质.菁优网版权所有
专题:
计算题;压轴题.
分析:
设直线AB的方程与抛物线方程联立消去y得3x2+(﹣6﹣2p)x+3=0,进而根据,可知M为A、B的中点,
可得p的关系式,解方程即可求得p.
解答:
解:设直线AB:,代入y2=2px得3x2+(﹣6﹣2p)x+3=0,
又∵,即M为A、B的中点,
∴xB+(﹣)=2,即xB=2+,
得p2+4P﹣12=0,
解得p=2,p=﹣6(舍去)
故答案为:2
点评:
本题考查了抛物线的几何性质.属基础题.
三.解答题(共10小题)
21.(2014•黄冈模拟)已知椭圆的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为,
(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.
考点:
椭圆的简单性质.菁优网版权所有
专题:
综合题;压轴题.
分析:
(I)设F(c,0),则直线l的方程为x﹣y﹣c=0,由坐标原点O到l的距离求得c,进而根据离心率求得a和b.
(II)由(I)可得椭圆的方程,设A(x1,y1)、B(x2,y2),l:x=my+1代入椭圆的方程中整理得方程△>0.由韦达定理可求得y1+y2和y1y2的表达式,假设存在点P,使成立,则其充要条件为:点P的坐标为(x1+x2,y1+y2),代入椭圆方程;把A,B两点代入椭圆方程,最后联立方程求得c,进而求得P点坐标,求出m的值得出直线l的方程.
解答:
解:(I)设F(c,0),直线l:x﹣y﹣c=0,
由坐标原点O到l的距离为
则,解得c=1
又,∴
(II)由(I)知椭圆的方程为
设A(x1,y1)、B(x2,y2)
由题意知l的斜率为一定不为0,故不妨设l:x=my+1
代入椭圆的方程中整理得(2m2+3)y2+4my﹣4=0,显然△>0.
由韦达定理有:,,①
假设存在点P,使成立,则其充要条件为:
点P的坐标为(x1+x2,y1+y2),
点P在椭圆上,即.
整理得2x12+3y12+2x22+3y22+4x1x2+6y1y2=6.
又A、B在椭圆上,即2x12+3y12=6,2x22+3y22=6、
故2x1x2+3y1y2+3=0②
将x1x2=(my1+1)(my2+1)=m2y1y2+m(y1+y2)+1及①代入②解得
∴,
x1+x2=,即
当;
当
点评:
本题主要考查了椭圆的性质.处理解析几何题,学生主要是在“算”上的功夫不够.所谓“算”,主要讲的是算理和算法.算法是解决问题采用的计算的方法,而算理是采用这种算法的依据和原因,一个是表,一个是里,一个是现象,一个是本质.有时候算理和算法并不是截然区分的.例如:三角形的面积是用底乘高的一半还是用两边与夹角的正弦的一半,还是分割成几部分来算?在具体处理的时候,要根据具体问题及题意边做边调整,寻找合适的突破口和切入点.
22.(2014•南充模拟)设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB相交于点D,与椭圆相交于E、F两点.
(Ⅰ)若,求k的值;
(Ⅱ)求四边形AEBF面积的最大值.
考点:
直线与圆锥曲线的综合问题;向量的共线定理.菁优网版权所有
专题:
计算题;压轴题.
分析:
(1)依题可得椭圆的方程,设直线AB,EF的方程分别为x+2y=2,y=kx,D(x0,kx0),E(x1,kx1),F(x2,kx2),且x1,x2满足方程(1+4k2)x2=4,进而求得x2的表达式,进而根据求得x0的表达式,由D在AB上知x0+2kx0=2,进而求得x0的另一个表达式,两个表达式相等求得k.
(Ⅱ)由题设可知|BO|和|AO|的值,设y1=kx1,y2=kx2,进而可表示出四边形AEBF的面积进而根据基本不等式的性质求得最大值.
解答:
解:(Ⅰ)依题设得椭圆的方程为,
直线AB,EF的方程分别为x+2y=2,y=kx(k>0).
如图,设D(x0,kx0),E(x1,kx1),F(x2,kx2),其中x1<x2
展开阅读全文