资源描述
学习方法报社 全新课标理念,优质课程资源
26.2 二次函数的图象与性质(6)
教学目标:
1.使学生掌握用描点法画出函数y=ax2+bx+c的图象.
2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标.
3.让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质.
重点难点:
重点:用描点法画出二次函数y=ax2+bx+c的图象和通过配方确定抛物线的对称轴、顶点坐标是教学的重点.
难点:理解二次函数y=ax2+bx+c(a≠0)的性质以及它的对称轴(顶点坐标分别是x=-、(-,)是教学的难点.
教学过程:
例1.求下列函数的最大值或最小值.
(1); (2).
分析 由于函数和的自变量x的取值范围是全体实数,所以只要确定它们的图象有最高点或最低点,就可以确定函数有最大值或最小值.
解 (1)二次函数中的二次项系数2>0,
因此抛物线有最低点,即函数有最小值.
因为=,
所以当时,函数有最小值是.
(2)二次函数中的二次项系数-1<0,
因此抛物线有最高点,即函数有最大值.
因为=,
所以当时,函数有最大值是.
探索 试一试,当2.5≤x≤3.5时,求二次函数的最大值或最小值.
例2.某产品每件成本是120元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间关系如下表:
x(元)
130
150
165
y(件)
70
50
35
若日销售量y是销售价x的一次函数,要获得最大销售利润,每件产品的销售价定为多少元?此时每日销售利润是多少?
分析 日销售利润=日销售量×每件产品的利润,因此主要是正确表示出这两个量.
解 由表可知x+y=200,
因此,所求的一次函数的关系式为.
设每日销售利润为s元,则有
.
因为,所以.
所以,当每件产品的销售价定为160元时,销售利润最大,最大销售利润为1600元.
例3.如图,在Rt⊿ABC中,∠C=90°,BC=4,AC=8,点D在斜边AB上,分别作DE⊥AC,DF⊥BC,垂足分别为E、F,得四边形DECF,设DE=x,DF=y.
(1)用含y的代数式表示AE;
(2)求y与x之间的函数关系式,并求出x的取值范围;
(3)设四边形DECF的面积为S,求S与x之间的函数关系,并求出S的最大值.
解 (1)由题意可知,四边形DECF为矩形,因此
.
(2)由∥,得,即,
所以,,x的取值范围是.
(3),
所以,当x=2时,S有最大值8.
课堂小结
最大值或最小值的求法,第一步确定a的符号,a>0有最小值,a<0有最大值;第二步配方求顶点,顶点的纵坐标即为对应的最大值或最小值.
解决实际问题时,应先分析问题中的数量关系,列出函数关系式,再研究所得的函数,得出结果.
[当堂课内练习]
1.对于二次函数,当x= 时,y有最小值.
2.已知二次函数有最小值 –1,则a与b之间的大小关系是 ( )
A.a<b B.a=b C.a>b D.不能确定
3.某商场销售一批衬衫,平均每天可售出20件,每件盈利40件,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经过市场调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.
(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?
(2)每件衬衫降价多少元时,商场平均每天盈利最多?
[本课课外作业]
A组
1.求下列函数的最大值或最小值.
(1); (2).
2.已知二次函数的最小值为1,求m的值.
3.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足函数关系:.y值越大,表示接受能力越强.
(1)x在什么范围内,学生的接受能力逐步增强?x在什么范围内,学生的接受能力逐步降低?
(2)第10分时,学生的接受能力是多少?
(3)第几分时,学生的接受能力最强?
B组
4.不论自变量x取什么数,二次函数的函数值总是正值,求m的取值范围.
5.如图,有长为24m的篱笆,一面利用墙(墙的最大可用长度a为10m),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x m,面积为S m2.
(1)求S与x的函数关系式;
(2)如果要围成面积为45 m2的花圃,AB的长是多少米?
(3)能围成面积比45 m2更大的花圃吗?如果能,请求出
最大面积,并说明围法;如果不能,请说明理由.
6.如图,矩形ABCD中,AB=3,BC=4,线段EF在对角线AC上,EG⊥AD,FH⊥BC,垂足分别是G、H,且EG+FH=EF.
(1)求线段EF的长;
(2)设EG=x,⊿AGE与⊿CFH的面积和为S,
写出S关于x的函数关系式及自变量x的取值范围,
并求出S的最小值.
第 3 页 共 3 页
展开阅读全文