收藏 分销(赏)

高三理科数学012.doc

上传人:pc****0 文档编号:7831819 上传时间:2025-01-19 格式:DOC 页数:6 大小:284KB 下载积分:10 金币
下载 相关 举报
高三理科数学012.doc_第1页
第1页 / 共6页
高三理科数学012.doc_第2页
第2页 / 共6页


点击查看更多>>
资源描述
东北师范大学附属中学网校(版权所有 不得复制) 期数 0509 SXG3 012 学科:理科数学 年级:高三 编稿老师:毕 伟 审稿老师:杨志勇 预 习 篇 [同步教学信息] 预习篇九 函数的极限 【教材阅读提示】 (1)当f(x)=a且时,我们说当时,f(x)的极限存在,且极限为a,记作. (2)当且时,我们说f(x)在处有极限,且极限为a,记作 ,需要说明的是,函数f(x)在处有极限,与f(x)在处是否有定义无关. 【基础知识精讲】 一、知识结构 二、重要内容提示 1.当时,函数f(x)的极限 当自变量x取正值并且无限增大时,如果函数f(x)无限趋近于一个常数a,就称当x趋向于正无穷大时,f(x)的极限是a, 记作f(x)= a,同样地,当自变量x取负值并其绝对值无限增大时,如果函数f(x)无限趋近于一个常数a,就称当x趋向于负无穷大时,f(x)的极限是a,记作f(x)=a. 当且仅当f(x)=a且f(x)=a,称当时,f(x)的极限是a,记作f(x)=a. 2.当时,函数f(x)的极限 当自变量x无限趋近于常数时,如果函数f(x)无限趋近于一个常数a,就称当x趋近于时,f(x)的极限是a,记作f(x)=a. 当自变量x从常数的左侧无限趋近于时,函数f(x)无限趋近于常数a,就称f(x)在处存在左极限a,记作f(x)=a,同样地,当x从的右侧无限趋近于时,函数f(x)无限趋近于常数a,就称f(x)在处存在右极限a,记作f(x)=a. 关系:f(x)=af(x)=f(x)=a. 注意:f(x)=a,是由f(x)=a且f(x)=a定义的. 而上述关系并非是f(x)=a的定义,只是一种等价条件,事实上的方式,不止是与这两种,而可以是任何一种,本质是“无限趋近”. 说明:(1)f(x)无限趋近于常数a,是指| f(x)-a|无限趋向于0,即| f(x)-a|可以任意小,并且保持任意小. (2)函数f(x)当时的极限与数列极限的异同. 数列中的项可以看作是n的函数,即,因此,极限也可看作是一种特殊的函数的极限,即. f(x)和f(x)是两个单向极限,它们与数列的极限很相似,所不同的是,前者x在无限趋近于+或-的过程中一般是连续变化的,后者是n取正整数不连续地无限趋近于+的. (3)双侧极限和单侧极限 f(x)=a是双侧极限,的意义是x可以从大于和小于两个方向无限趋近于. 但,因为函数f(x)的极限是a仅与f(x)在点附近的函数值的变化趋势有关,而与f(x)在点处的值无关. 一方面,f(x)可以在点处无定义,另一方面,即使f(x)在点处有定义,f(x)也不一定等于. f(x)=a和f(x)=a都是单侧极限,的意义是x只从小于的方向无限趋近于,的意义是x只从大于的方向无限趋近于,但都有,其理由与f(x)=a中一样. 【典型例题解析】 例1 求下列极限: 解: . 例2 已知作出函数f(x)的图象,并讨论是否存在. 解:函数图象如图所示, ∵, , ∴=1. 例3 判断下列命题的真假: (1)若,则. (2)若不存在,则也不存在. (3)若f(x)在处无定义,则不存在. (4)若不存在,则f(x)在处无定义. (5)若存在,则与要么同时存在,要么同时不存在. 解:(1)假命题 反例:在x=0处极限均为0,但f(0)=0,g(0)=1,事实上f(x)或g(x)在处甚至可能无定义. (2)假命题 反例:f(x)=(-1)=-1, f(x)=1=1, 不存在,但. ∴=1. (3)假命题 事实上,(2)中的即是很好的反例. (4)假命题 反例:由(2)的反例中可知不存在,但f(0)=0. (5)假命题 反例:,显然有,且,但不存在,=0. 例4 当a, b取何值时,存在,其值为多少? 解:x=0是此分段函数的分界点,而存在的充要条件是f(x)与f(x)都存在并且相等,∴f(x)=,f(x)=, ∴当b=2,a取任意常数时,f(x)存在,其值为2. 【强化训练】 同步落实[※级] 一、选择题 1.函数f(x)在处的左、右极限相等是f(x)在处极限存在的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 2.的值是( ) A.4 B.-4 C.0 D.不存在 二、填空题 3.设m, n均为正整数,则当m<n时,________,当m= n时,________. 4.设且存在,则a=______. 同步检测[※※级] 一、选择题 1.设,若存在,则常数b的值是( ) A.0 B.1 C.-1 D.e 2.下列结论中正确的是( ) (1)若,则; (2)若,则; (3)若,则; (4)若,则. A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4) 3.设函数,以下叙述正确的是( ) A.当时, B.当时, C.当时, D.当时, 4.已知,则下列结论正确的是( ) A. B. C. D. 二、填空题 5.=________. 6.=________. 三、解答题 7.讨论下列函数当和时的极限. 参考答案 同步落实[※级] 一、1.C 2.C 二、3.0,1 4.2 同步检测[※※级] 一、1.B 2.D 3.C 4.B 二、5.5 6.4 三、7.解:(1)当时,;当时,,故时,f(x)没有极限. (2)当时,;当时,,故当时,f(x)没有极限. (3)当时,;当时,,故当时,f(x)有极限,极限为0.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 百科休闲 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服