资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,2014/1/17,#,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,LOGO,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,2014/1/17,#,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,2014/1/17,#,第 四 讲 最 短 路 线,教师:吴琼,电话,:,看图,思考:,为什么有的人会经常践踏草地呢,?,绿地里本没有路,走的人多了,禁止践踏,两点之间,线段最短,爱护草坪,将军饮马问题:,两线段之和最短这个问题早在古罗马时代就有了,传说亚历山大城有一位精通数学和物理的学者,名叫海伦一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题:,将军每天骑马从城堡,A,出发,到城堡,B,,途中马要到小溪边饮水一次。将军问怎样走路程最短?,这就是被称为,将军饮马,而广为流传的问题。,P,两点之间线段最短,.,根据:,B,A,(,一,),两点在一条,直线两侧,例,1.,如图:古希腊一位将军骑马从城堡,A,到城堡,B,,途中马要到小溪边饮水一次。问将军怎样走路程最短?,最短路线:,将军饮马:,A-P-B.,拓展,1,:已知美羊羊在,A,地玩耍,这时喜羊羊在小溪的对面,C,玩耍,并且,AC,两地是关于小溪的对称点,它俩在小溪的任意一点,E,处汇合,再一起回家的最短路线是什么?,A,C,B,M,N,将军饮马:,例,2.,如,图:一位,将军骑马从,城堡,A,到城堡,B,,,途中,马要到河边饮水一次,,,问:这位将军怎样走路程最短?,A,B,河,两点在一条直线同侧,(,二,),一次,轴对称,:,B,A,B,C,例,2,作法,:,(,1,)作,点,B,关于,直线,MN,的对称点,B,(,2,),连结,BA,,交,MN,于点,C,;,所以,点,C,就是所求的点,M,N,两点在一条直线同侧,(,二,),一次,轴对称,:,B,C+,A,C,B,C,+,A,C,,,即,AC+BC,最小,N,A,B,C,B,C,直线,MN,是点,B,、,B,的,对称轴,,,点,C,、,C,在,对称轴上,,,B,C=,B,C,,,B,C,=,B,C,在,MN,上任取另一点,C,,,连结,B,C,、,B,C,、,A,C,、,B,C,例,2,证明,:,在,AB,C,中,,,AB,AC,+B,C,,,B,C+,A,C,=,B,C+,A,C,=,BA,M,B,C,+,A,C,=,B,C,+,A,C,两点在一条直线同侧,(,二,),一次,轴对称,:,例,2,变式,1,:已知,:,P,、,Q,是,ABC,的边,AB,、,AC,上的点,你能在,BC,上确定一点,R,,,使,PQR,的周长最,短吗?,两点在一条直线同侧,(,二,),一次,轴对称,:,草地,河边,.,驻地,A,例,3.,如图:一位将军骑马从,驻地,A,出发,先牵马去,草地,OM,吃草,再牵马去,河边,ON,喝水,最后回到驻地,A,,,问:这位将军怎样走路程最短?,O,M,N,(,三,),二次轴对称,:,一点,在两相交直线内部,.,.,.,.,.,例,3,已知如图 和 内,一点,(,三,),二次轴对称,:,一点,在两相交直线内部,求作,:OM,上一点,B,ON,上一点,C,使,AB+BC+AC,最小,作法,(,1,)作点,A,关于,OM,、,ON,的对称点,A,、,A”,例,3,变式,1,:已知,P,是,ABC,的边,BC,上的点,,,你能在,AB,、,AC,上分别,确定一点,Q,和,R,,,使,PQR,的周长最,短吗?,(,三,),二次轴对称,:,一点,在两相交直线内部,例,4,:,如,图,,A,为马厩,,B,为帐篷,,,将军,某一天要,从,马厩牵出马,先到草地边某一,处牧马,,再,到河边饮马,然后回到帐篷,,,请,你,帮助确定,这一天的最短路线。,(四)二次轴对称,:,两,点在两相交直线内部,例,4,答案:如图,A,是马厩,B,为帐篷,牧马人某一天要从马厩牵出马,先到草地边某一处牧马,再到河边饮马,然后回到帐篷,.,请你帮他确定这一天的最短路线,.,A,B,A,B,C,D,(四)二次轴对称,:,两,点在两相交直线内部,.,.,.,.,.,.,(四)二次轴对称,:,两,点在两相交直线内部,例,4,变式,1,:已知:,MON,和,MON,内两点,A,、,B,。,求作:点,C,和点,D,使得点,C,在,OM,上,,点,D,在,ON,上,且,AC+CD+BD+AB,最短。,例,4,变式,2,:,如图,,OMCN,是矩形的台球桌面,有黑、白两球分别位于,B,、,A,两点的位置上,,试问怎样撞击白球,使白球,A,依次碰撞球台边,OM,、,ON,后,反弹击中黑球?,(四)二次轴对称,:,两,点在两相交直线内部,.,.,.,.,.,.,A,A,B,B,C,D,M,O,N,例,4,变式,2,:,(四)二次轴对称,:,两,点在两相交直线内部,(,2,)把,A,,,B,在直线同侧的问题,转化为,在,直线的两侧,,化折线为直线,,将军饮马的实质:,(,3,)可利用“两点之间线段最短”,加以解决。,(,1,)求最短路线问题,-,通过几何变换找对称图形。,反思是进步的阶梯,我的收获;,我的疑惑;,面对一个新,的求线段最短问题,时,我们可以通过怎样的途径去研究它?,
展开阅读全文