资源描述
考网| 精品资料共享 你的分享,大家共享
高考数学140分必读之把关题解析30讲(5)
1.北京丰台区二模
19. (本小题满分14分)
设双曲线的两个焦点分别为,离心率为2。
(I)求此双曲线的渐近线的方程;
(II)若A、B分别为上的点,且,求线段AB的中点M的轨迹方程,并说明轨迹是什么曲线;
(III)过点能否作出直线,使与双曲线交于P、Q两点,且。若存在,求出直线的方程;若不存在,说明理由。
解:(I)
,渐近线方程为 4分
(II)设,AB的中点
则M的轨迹是中心在原点,焦点在x轴上,长轴长为,短轴长为的椭圆。(9分)
(III)假设存在满足条件的直线
设
由(i)(ii)得
∴k不存在,即不存在满足条件的直线。 14分
20. (本小题满分13分)
已知数列的前n项和为,且对任意自然数都成立,其中m为常数,且。
(I)求证数列是等比数列;
(II)设数列的公比,数列满足:
,试问当m为何值时,
成立?
解:(I)由已知
(2)
由得:,即对任意都成立
(II)当时,
由题意知
13分
2.石家庄模拟
21.(本小题满分12分)
设椭圆的左焦点为,上顶点为,过点与垂直的直线分别交椭圆和轴正半轴于,两点,且分向量所成的比为8∶5.
(1)求椭圆的离心率;
(2)若过三点的圆恰好与直线:相切,求椭圆方程.
解:(1)设点其中.
由分所成的比为8∶5,得, 2分
∴.①, 4分
而,
∴..②, 5分
由①②知.
∴. 6分
(2)满足条件的圆心为,
, 8分
圆半径. 10分
由圆与直线:相切得,,
又.
∴椭圆方程为. 12分
22.(本小题满分14分)
(理)给定正整数和正数,对于满足条件的所有无穷等差数列,试求的最大值,并求出取最大值时的首项和公差.
(文)给定正整数和正数,对于满足条件的所有无穷等差数列,试求的最大值,并求出取最大值时的首项和公差.
(理)解:设公差为,则. 3分
4分
. 7分
又.
∴,当且仅当时,等号成立. 11分
∴. 13分
当数列首项,公差时,,
∴的最大值为. 14分
(文)解:设公差为,则. 3分
, 6分
又.
∴.
当且仅当时,等号成立. 11分
∴. 13分
当数列首项,公差时,.
∴的最大值为. 14分
3.唐山二模
21.(本小题满分12分)
垂直于x轴的直线交双曲线于M、N不同两点,A1、A2分别为双曲线的左顶点和右顶点,设直线A1M与A2N交于点P(x0,y0)
(Ⅰ)证明:
(Ⅱ)过P作斜率为的直线l,原点到直线l的距离为d,求d的最小值.
解(Ⅰ)证明:
①
直线A2N的方程为 ②……4分
①×②,得
(Ⅱ)
……10分
当……12分
22.(本小题满分14分)
已知函数
(Ⅰ)若
(Ⅱ)若
(Ⅲ)若的大小关系(不必写出比较过程).
解:(Ⅰ)
(Ⅱ)设
……6分
(Ⅲ)在题设条件下,当k为偶数时
当k为奇数时……14分
Page 8 of 8
展开阅读全文