1、高中数学复习专题讲座构建数学模型解数列综合题和应用性问题高考要求 纵观近几年的高考,在解答题中,有关数列的试题出现的频率较高,不仅可与函数、方程、不等式、复数相联系,而且还与三角、立体几何密切相关;数列作为特殊的函数,在实际问题中有着广泛的应用,如增长率,减薄率,银行信贷,浓度匹配,养老保险,圆钢堆垒等问题 这就要求同学们除熟练运用有关概念式外,还要善于观察题设的特征,联想有关数学知识和方法,迅速确定解题的方向,以提高解数列题的速度 重难点归纳 1 解答数列综合题和应用性问题既要有坚实的基础知识,又要有良好的思维能力和分析、解决问题的能力;解答应用性问题,应充分运用观察、归纳、猜想的手段,建立
2、出有关等差(比)数列、递推数列模型,再综合其他相关知识来解决问题 2 纵观近几年高考应用题看,解决一个应用题,重点过三关 (1)事理关 需要读懂题意,明确问题的实际背景,即需要一定的阅读能力 (2)文理关 需将实际问题的文字语言转化数学的符号语言,用数学式子表达数学关系 (3)事理关 在构建数学模型的过程中;要求考生对数学知识的检索能力,认定或构建相应的数学模型,完成用实际问题向数学问题的转化 构建出数学模型后,要正确得到问题的解,还需要比较扎实的基础知识和较强的数理能力 典型题例示范讲解 例1从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入80
3、0万元,以后每年投入将比上年减少,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加 (1)设n年内(本年度为第一年)总投入为an万元,旅游业总收入为bn万元,写出an,bn的表达式;(2)至少经过几年,旅游业的总收入才能超过总投入?命题意图 本题主要考查建立函数关系式、数列求和、不等式等基础知识;考查综合运用数学知识解决实际问题的能力,本题有很强的区分度,属于应用题型,正是近几年高考的热点和重点题型 知识依托 本题以函数思想为指导,以数列知识为工具,涉及函数建模、数列求和、不等式的解法等知识点 错解分析 (1)问an、bn实际上是两个数
4、列的前n项和,易与“通项”混淆;(2)问是既解一元二次不等式又解指数不等式,易出现偏差 技巧与方法 正确审题、深刻挖掘数量关系,建立数量模型是本题的灵魂,(2)问中指数不等式采用了换元法,是解不等式常用的技巧 解 (1)第1年投入为800万元,第2年投入为800(1)万元,第n年投入为800(1)n1万元,所以,n年内的总投入为 an=800+800(1)+800(1)n1=800(1)k1=40001()n第1年旅游业收入为400万元,第2年旅游业收入为400(1+),第n年旅游业收入400(1+)n1万元 所以,n年内的旅游业总收入为bn=400+400(1+)+400(1+)k1=400
5、()k1=1600()n1(2)设至少经过n年旅游业的总收入才能超过总投入,由此bnan0,即1600()n140001()n0,令x=()n,代入上式得 5x27x+20 解此不等式,得x,或x1(舍去) 即()n,由此得n5 至少经过5年,旅游业的总收入才能超过总投入 例2已知Sn=1+,(nN*),设f(n)=S2n+1Sn+1,试确定实数m的取值范围,使得对于一切大于1的自然数n,不等式 f(n)logm(m1)2log(m1)m2恒成立 命题意图 本题主要考查应用函数思想解决不等式、数列等问题,需较强的综合分析问题、解决问题的能力 知识依托 本题把函数、不等式恒成立等问题组合在一起,
6、构思巧妙 错解分析 本题学生很容易求f(n)的和,但由于无法求和,故对不等式难以处理 技巧与方法 解决本题的关键是把f(n)(nN*)看作是n的函数,此时不等式的恒成立就转化为 函数f(n)的最小值大于logm(m1)2log(m1)m2 解 Sn=1+ (nN*)f(n+1)f(n)f(n)是关于n的增函数f(n) min=f(2)=要使一切大于1的自然数n,不等式f(n)logm(m1)2log(m1)m2恒成立只要logm(m1)2log(m1)m2成立即可由得m1且m2此时设logm(m1)2=t 则t0于是解得0t1 由此得0logm(m1)21 解得m且m2 例3已知二次函数y=f
7、(x)在x=处取得最小值 (t0),f(1)=0 (1)求y=f(x)的表达式;(2)若任意实数x都满足等式f(x)g(x)+anx+bn=xn+1g(x)为多项式,nN*),试用t表示an和bn;(3)设圆Cn的方程为(xan)2+(ybn)2=rn2,圆Cn与Cn+1外切(n=1,2,3,);rn是各项都是正数的等比数列,记Sn为前n个圆的面积之和,求rn、Sn 解 (1)设f(x)=a(x)2,由f(1)=0得a=1 f(x)=x2(t+2)x+t+1 (2)将f(x)=(x1)x(t+1)代入已知得 (x1)x(t+1)g(x)+anx+bn=xn+1,上式对任意的xR都成立,取x=1
8、和x=t+1分别代入上式得 且t0,解得an=(t+1)n+11,bn=1(t+1n)(3)由于圆的方程为(xan)2+(ybn)2=rn2,又由(2)知an+bn=1,故圆Cn的圆心On在直线x+y=1上,又圆Cn与圆Cn+1相切,故有rn+rn+1=an+1an=(t+1)n+1设rn的公比为q,则得q=t+1,代入得rn=Sn=(r12+r22+rn2)=(t+1)2n1 学生巩固练习 1 已知二次函数y=a(a+1)x2(2a+1)x+1,当a=1,2,n,时,其抛物线在x轴上截得的线段长依次为d1,d2,,dn,则 (d1+d2+dn)的值是( )A 1 B 2C 3D 42 在直角
9、坐标系中,O是坐标原点,P1(x1,y1)、P2(x2,y2)是第一象限的两个点,若1,x1,x2,4依次成等差数列,而1,y1,y2,8依次成等比数列,则OP1P2的面积是_ 3 从盛满a升酒精的容器里倒出b升,然后再用水加满,再倒出b升,再用水加满;这样倒了n次,则容器中有纯酒精_升 4 据2000年3月5日九届人大五次会议政府工作报告 “2001年国内生产总值达到95933亿元,比上年增长7 3%,”如果“十五”期间(2001年2005年)每年的国内生产总值都按此年增长率增长,那么到“十五”末我国国内年生产总值约为_亿元 5 已知数列an满足条件 a1=1,a2=r(r0),且anan+
10、1是公比为q(q0)的等比数列,设bn=a2n1+a2n(n=1,2,) (1)求出使不等式anan+1+an+1an+2an+2an+3(nN*)成立的q的取值范围;(2)求bn和,其中Sn=b1+b2+bn;(3)设r=219 21,q=,求数列的最大项和最小项的值 6 某公司全年的利润为b元,其中一部分作为奖金发给n位职工,奖金分配方案如下 首先将职工按工作业绩(工作业绩均不相同)从大到小,由1到n排序,第1位职工得奖金元,然后再将余额除以n发给第2位职工,按此方法将奖金逐一发给每位职工,并将最后剩余部分作为公司发展基金 (1)设ak(1kn)为第k位职工所得奖金金额,试求a2,a3,并
11、用k、n和b表示ak(不必证明);(2)证明akak+1(k=1,2,n1),并解释此不等式关于分配原则的实际意义;(3)发展基金与n和b有关,记为Pn(b),对常数b,当n变化时,求Pn(b) 7 据有关资料,1995年我国工业废弃垃圾达到7 4108吨,占地562 4平方公里,若环保部门每年回收或处理1吨旧物资,则相当于处理和减少4吨工业废弃垃圾,并可节约开采各种矿石20吨,设环保部门1996年回收10万吨废旧物资,计划以后每年递增20%的回收量,试问 (1)2001年回收废旧物资多少吨?(2)从1996年至2001年可节约开采矿石多少吨(精确到万吨)?(3)从1996年至2001年可节约
12、多少平方公里土地?8 已知点的序列An(xn,0),nN,其中x1=0,x2=a(a0),A3是线段A1A2的中点,A4是线段A2A3的中点,An是线段An2An1的中点, (1)写出xn与xn1、xn2之间关系式(n3);(2)设an=xn+1xn,计算a1,a2,a3,由此推测数列an的通项公式,并加以证明;(3)求xn 参考答案:1 解析 当a=n时y=n(n+1)x2(2n+1)x+1由x1x2=,得dn=,d1+d2+dn答案 A2 解析 由1,x1,x2,4依次成等差数列得 2x1=x2+1,x1+x2=5解得x1=2,x2=3 又由1,y1,y2,8依次成等比数列,得y12=y2
13、,y1y2=8,解得y1=2,y2=4,P1(2,2),P2(3,4) =(3,4) 答案 13 解析 第一次容器中有纯酒精ab即a(1)升,第二次有纯酒精a(1),即a(1)2升,故第n次有纯酒精a(1)n升 答案 a(1)n4 解析 从2001年到2005年每年的国内生产总值构成以95933为首项,以7 3%为公比的等比数列,a5=95933(1+7 3%)4120000(亿元) 答案 1200005 解 (1)由题意得rqn1+rqnrqn+1 由题设r0,q0,故从上式可得 q2q10,解得q,因q0,故0q;(2) b1=1+r0,所以bn是首项为1+r,公比为q的等比数列,从而bn
14、=(1+r)qn-1 当q=1时,Sn=n(1+r), ,从上式可知,当n20 20,即n21(nN*)时,Cn随n的增大而减小,故1CnC21=1+=2 25当n20 20,即n20(nN*)时,Cn也随n的增大而减小,故1CnC20=1+=4综合两式知,对任意的自然数n有C20CnC21,故Cn的最大项C21=2 25,最小项C20=4 6 解 (1)第1位职工的奖金a1=,第2位职工的奖金a2=(1)b,第3位职工的奖金a3=(1)2b,第k位职工的奖金ak= (1)k1b;(2)akak+1=(1)k1b0,此奖金分配方案体现了“按劳分配”或“不吃大锅饭”的原则 (3)设fk(b)表示
15、奖金发给第k位职工后所剩余数,则f1(b)=(1)b,f2(b)=(1)2b,fk(b)=(1)kb 得Pn(b)=fn(b)=(1)nb,故 7 解 设an表示第n年的废旧物资回收量,Sn表示前n年废旧物资回收总量,则数列an是以10为首项,1+20%为公比的等比数列 (1)a6=10(1+20%)5=101.25=24.883225(万吨)(2)S6=99.299299.3(万吨)从1996年到2000年共节约开采矿石2099 31986(万吨)(3)由于从1996年到2001年共减少工业废弃垃圾499.3=397.2(万吨),从1996年到2001年共节约 3 平方公里 8 解 (1)当n3时,xn=;由此推测an=()n-1a(nN)证法一 因为a1=a0,且 (n2)所以an=()n-1a 证法二 用数学归纳法证明 ()当n=1时,a1=x2x1=a=()0a,公式成立;()假设当n=k时,公式成立,即ak=()k1a成立 那么当n=k+1时,ak+1=xk+2xk+1=据()()可知,对任意nN,公式an=()n-1a成立 (3)当n3时,有xn=(xnxn1)+(xn1xn2)+(x2x1)+x1=an1+an2+a1,由(2)知an是公比为的等比数列,所以a