1、泵型号意义:如40LG121540进出口直径(mm)LG高层建筑给水泵(高速) 12流量(m3/h)15-单级扬程(M) 200QJ20-108/8200-表示机座号200QJ-潜水电泵20流量20m3/h108-扬程108M8-级数8级 水泵的基本构成:电机、联轴器、泵头(体)及机座(卧式)。 水泵的主要参数有:流量,用Q表示,单位是M3/H,L/S。扬程,用H表示,单位是M。 对清水泵,必需汽蚀余量(M)参数非常重要,特别是用于吸上式供水设备时。 对潜水泵,额定电流参数(A)非常重要,特别是用于变频供水设备时。 电机的主要参数:电机功率(KW),转速(r/min),额定电压(V),额定电流
2、(A)。 联轴器泵头(体_)卧式机座 什么叫流量?用什么字母表示?用几种计量单位?如何换算?如何换算成重量及公式? 答:单位时间内泵排出液体的体积叫流量,流量用Q表示,计量单位:立方米/小时(m3/h),升/秒(l/s),L/s=3.6m3/h=0.06m3/min=60L/min G=QG为重量为液体比重 例:某台泵流量50m3/h,求抽水时每小时重量?水的比重为1000公斤/立方米。 解:G=Q=501000(m3/hkg/m3)=50000kg/h=50t/h 什么叫扬程?用什么字母表示?用什么计量单位?和压力的换算及公式? 答:单位重量液体通过泵所获得的能量叫扬程。泵的扬程包括吸程在内
3、,近似为泵出口和入口压力差。扬程用H表示,单位为米(m)。泵的压力用P表示,单位为Mpa(兆帕),H=P/.如P为1kg/cm2,则H=(lkg/cm2)/(1000kg/m3)H=(1kg/cm2)/(1000公斤/m3)=(10000公斤/m2)/1000公斤/m3=10m 1Mpa=10kg/cm2,H=(P2-P1)/(P2=出口压力P1=进口压力) 什么叫泵的效率?公式如何? 答:指泵的有效功率和轴功率之比。=Pe/P 泵的功率通常指输入功率,即原动机传到泵轴上的功率,故又称轴功率,用P表示。 有效功率即:泵的扬程和质量流量及重力加速度的乘积。 Pe=gQH(W)或Pe=QH/100
4、0(KW) :泵输送液体的密度(kg/m3) :泵输送液体的重度=g(N/m3) g:重力加速度(m/s) 质量流量Qm=Q(t/h或kg/s) 什么叫额定流量,额定转速,额定扬程? 答:根据设定泵的工作性能参数进行水泵设计,而达到的最佳性能,定为泵的额定性能参数,通常指产品目录或样本上所指定的参数值。 如:50-125流量12.5m3/h为额定流量,扬程20m为额定扬程,转速2900转/分为额定转速 什么叫汽蚀余量?什么叫吸程?各自计量单位表示字母? 答:泵在工作时液体在叶轮的进口处因一定真空压力下会产生汽体,汽化的气泡在液体质点的撞击运动下,对叶轮等金属表面产生剥蚀,从而破坏叶轮等金属,此
5、时真空压力叫汽化压力,汽蚀余量是指在泵吸入口处单位重量液体所具有的超过汽化压力的富余能量。单位用米标注,用(NPSH)r。吸程即为必需汽蚀余量h:即泵允许吸液体的真空度,亦即泵允许的安装高度,单位用米。 吸程=标准大气压(10.33米)-汽蚀余量-安全量(0.5米) 标准大气压能压管路真空高度10.33米。 例如:某泵必需汽蚀余量为4.0米,求吸程h? 解:h=10.33-4.0-0.5=5.83米 什么是泵的特性曲线?包括几方面?有何作用? 答:通常把表示主要性能参数之间关系的曲线称为离心泵的性能曲线或特性曲线,实质上,离心泵性能曲线是液体在泵内运动规律的外部表现形式,通过实测求得。特性曲线
6、包括:流量-扬程曲线(Q-H),流量-效率曲线(Q-),流量-功率曲线(Q-N),流量-汽蚀余量曲线(Q-(NPSH)r),性能曲线作用是泵的任意的流量点,都可以在曲线上找出一组与其相对的扬程,功率,效率和汽蚀余量值,这一组参数称为工作状态,简称工况或工况点,离心泵最高效率点的工况称为最佳工况点,最佳工况点一般为设计工况点。一般离心泵的额定参数即设计工况点和最佳工况点相重合或很接近。在实践选效率区间运行,即节能,又能保证泵正常工作,因此了解泵的性能参数相当重要。 什么是泵的全性能测试台? 答:能通过精密仪器准确测试出泵的全部性能参数的设备为全性能测试台。国家标准精度为B级。流量用精密蜗轮流量计
7、测定,扬程用精密压力表测定。吸程用精密真空表测定。功率用精密轴功率机测定。转速用转速表测定。效率根据实测值:n=rQ102计1.高扬程水泵用于低扬程抽水很多机手认为抽水扬程越低,电机负荷越小。在这种错误认识的误导下,选购水泵时,常将水泵的扬程选得很高。其实对于离心式水泵而言,当水泵型号确定后,其消耗功率的大小是与水泵的实际流量成正比的。而水泵的流量会随扬程的增加而减小,因而扬程越高,流量越小,消耗功率也就越小。反之,扬程越低,流量越大,消耗的功率也就越大。因此,为了防止电机过载,一般要求水泵的实际抽水使用扬程不得低于标定扬程的60%。所以当高扬程用于过低扬程抽水时,电机容易过载而发热,严重时可
8、烧毁电机。若应急使用,则必须在出水管上装一个用于调节出水量的闸阀(或用木头等物堵小出水口),以减小流量,防止电机过载。注意电机温升,若发现电机过热,应及时关小出水口流量或关机。这一点也容易产生误解,有些机手认为堵塞出水口,强制减少流量,会增加电机负荷。其实正好相反,正规的大功率离心泵排灌机组的出水管上都装有闸阀,为了减小机组启动时的电机负荷,应先关闭闸阀,待电机启动后再逐渐开启闸阀就是这个道理。 2.大口径水泵配小水管抽水 很多机手认为这样可以提高实际扬程,其实水泵的实际扬程=总扬程损失扬程。当水泵型号确定后,总扬程是一定的;损失扬程主要来自于管路阻力,管径越小显然阻力越大,因而损失扬程越大,
9、所以减小管径后,水泵的实际扬程非但不能增加,反而会降低,导致水泵效率下降。同理,当小管径水泵用大水管抽水时,也不会降低水泵的实际扬程,反而会因管路的阻力减小而减小了损失扬程,使实际扬程有所提高。也有机手认为小管径水泵用大水管抽水时,必然会大大增加电机负荷,他们认为管径增大后,出水管里的水对水泵叶轮的压力就大,因而会大大增加电机负荷。殊不知,液体压强的大小只与扬程高低有关,而与水管截面积大小无关。只要扬程一定,水泵的叶轮尺寸不变,无论管径多大,作用在叶轮上的压力都是一定的。只是管径增大后,水流阻力会减小,而使流量有所增加,动力消耗也有适当增加。但只要在额定扬程范围内,无论管径如何增加水泵都是可以
10、正常工作的,并且还可以减小管路损耗,提高水泵效率。 3.安装进水管路时,水平段水平或向上翘 这样做会使进水管内聚集空气,降低水管和水泵的真空度,使水泵吸水扬程降低,出水量减少。正确的做法是:其水平段应向水源方向稍有倾斜,不应水平,更不得向上翘起。 4.进水管路上用的弯头多 如果在进水管路上用的弯头多,会增加局部水流阻力。并且弯头应在垂直方向转弯,不允许在水平方向转弯,以免聚集空气。 5.水泵进水口与弯头直接相连 这样会使水流经过弯头进入叶轮时分布不均。当进水管直径大于水泵进水口时,应安装偏心变径管。偏心变径管平面部分要装在上面,斜面部分装在下面。否则聚集空气,出水量减少或抽不上水,并有撞击声等
11、。若进水管与水泵进水口直径相等时,应在水泵进水口和弯头之间加一直管,直管长度不得小于水管直径的23倍。 6.装有底阀的进水管最下一节不是垂直的 如这样安装,阀门不能自行关闭,造成漏水。正确安装方法是:装有底阀的进水管,最下一节最好是垂直的。如因地形条件限制不能垂直安装,则水管轴线与水平面夹角应在60以上。 7.进水管的进水口位置不对 (1)进水管的进水口离进水池底和池壁距离小于进水口直径。如果池底有泥沙等污物时,进水口离池底的距离小于直径的1.5倍时,会造成抽水时进水不畅或吸进泥沙杂物,堵塞进水口。 (2)进水管的进水口入水深度不够时,这样会引起进水管周围水面产生漩涡,影响进水,减少出水量。正
12、确的安装方法是:中小型水泵入水深度不得小于300600mm,大型水泵不得小于6001000mm。 8.出水管口在出水池正常水位以上 如果出水口在出水池正常水位以上,虽增加了水泵扬程,但减少了流量。如因地形条件所限,出水口必须高出出水池水位,则应在管口加装弯头和短管,使水管成为虹吸式,降低出水口高度第二章流体输送机械在化工生产中,常常需要将流体从低处输送到高处,或从低压送至高压,或沿管道送至较远的地方。为达到此目的,必须对流体加入外功,以克服流体阻力及补充输送流体时所不足的能量。为液体提供能量的机械称为液体输送机械。为气体提供能量的机械称为气体输送机械,本章重点:离心泵的工作原理、性能参数及流量
13、调节第一节液体输送机械2-1.1 离 心 泵 离心泵具有结构简单、流量大而且均匀、操作方便的优点。它在化工生产中得到广泛地应用,约占化工用泵的8090。一、离心泵工作原理离心泵蜗壳形泵壳内,有一固定在泵轴上的工作叶轮。叶轮上有612片稍微向后弯曲的叶片,叶片之间形成了使液体通过的通道。泵壳中央有一个液体吸入口与吸入管连接。液体经底阀和吸入管进入泵内。泵壳上的液体压出口与压出管连接,泵轴用电机或其它动力装置带动。启动前,先将泵壳内灌满被输送的液体。启动时,泵轴带动叶轮旋转,叶片之间的液体随叶轮一起旋转,在离心力的作用下,液体沿着叶片间的通道从叶轮中心进口处被甩到叶轮外围,以很高的速度流入泵壳,液
14、体流到蜗形通道后,由于截面逐渐扩大,大部分动能转变为静压能。于是液体以较高的压力,从压出口进入压出管,输送到所需的场所。当叶轮中心的液体被甩出后,泵壳的吸入口就形成了一定的真空,外面的大气压力迫使液体经底阀吸入管进入泵内,填补了液体排出后的空间。这样,只要叶轮旋转不停,液体就源源不断地被吸入与排出。离心泵若在启动前未充满液体,则泵壳内存在空气。由于空气密度很小,所产生的离心力也很小。此时,在吸入口处所形成的真空不足以将液体吸入泵内。虽启动离心泵,但不能输送液体。此现象称为“气缚”。为便于使泵内充满液体,在吸入管底部安装带吸滤网的底阀,底阀为止逆阀,滤网是为了防止固体物质进入泵内,损坏叶轮的叶片
15、或妨碍泵的正常操作。二、离心泵的主要部件离心泵的主要部件有叶轮和泵壳。1、叶轮从离心泵的工作原理可知,叶轮是离心泵的最重要部件。按结构可分为以下三种:a敞式叶轮敞式叶轮两侧都没有盖板,制造简单,清洗方便。但由于叶轮和壳体不能很好地密合,部分液体会流回吸液侧,因而效率较低。它适用于输送含杂质的悬浮液。b半蔽式叶轮半蔽式叶轮吸入口一侧没有前盖板,而另一侧有后盖板,它也适用于输送悬浮液。c蔽式叶轮蔽式叶轮叶片两侧都有盖板,这种叶轮效率较高,应用最广,但只适用于输送清洁液体。蔽式或半蔽式叶轮的后盖板与泵壳之间的缝隙内,液体的压力较入口侧为高,这使叶轮遭受到向入口端推移的轴向推力。轴向推力能引起泵的振动
16、,轴承发热,甚至损坏机件。为了减弱轴向推力,可在后盖板上钻几个小孔,称为平衡孔,让一部分高压液体漏到低压区以降低叶轮两侧的压力差。这种方法虽然简便,但由于液体通过平衡孔短路回流,增加了内泄漏量,因而降低了泵的效率。按吸液方式的不同,离心泵可分为单吸和双吸两种,单吸式构造简单,液体从叶轮一侧被吸入;双吸式比较复杂,液体从叶轮两侧吸入。显然,双吸式具有较大的吸液能力,而且基本上可以消除轴向推力。二泵壳 离心泵的外壳多做成蜗壳形,其内有一个截面逐渐扩大的蜗形通道。从离心泵的的工作过程可以看到,泵壳的作用是集液和能量转换。叶轮在泵壳内顺着蜗形通道逐渐扩大的方向旋转。由于通道逐渐扩大,以高速度从叶轮四周
17、抛出的液体可逐渐降低流速。减少能量损失,从而使部分动能有效地转化为静压能。有的离心泵为了减少液体进入蜗壳时的碰撞,在叶轮与泵壳之间安装一固定的导轮,导轮具有很多逐渐转向的孔道,使高速液体流过时能均匀而缓慢地将动能转化为静压能,使能量损失降到最小程度。泵壳与轴要密封好,以免液体漏出泵外,或外界空气漏进泵内三、理论压头假设:叶片的数目无限多,叶片的厚度无限薄,从而可以认为液体完全沿着叶片的弯曲表面流动,无任何环流现象;液体是理想流体,无摩擦阻力损失。在叶轮的进、出口截面到机械能衡算式,从而导出离心泵理论压头为 (2-15)(3)流量对理论压头的影响 (2-18) (4)叶片形状对理论压头的影响当泵
18、转速n、叶轮直径、叶轮出口处叶片宽度、流量一定时,随叶片形状而变。 径向叶片,=,=0,=与无关。 后弯叶片, 前弯叶片,由此可见,前弯叶片产生的最大,似乎前弯叶片最有利,实际情况是否果真如此呢?我们分析如下:=位头()+静压头()+动压头()而的前弯叶片流体出口的绝对速度很大,此时增加的压头主要是动压头,静压头反而比后弯叶片小。动压头虽然可以通过蜗壳部分地转化为静压头,但由于大,液体在泵壳内产生的冲击剧烈得多,转换时的能量损失大为增加,效率低。故为获得较多的能量利用率,离心泵总是采用后弯叶片( )。2-1. 2 离心泵的主要性能参数为了正确选择和使用离心泵,需要了解离心泵的性能。离心泵的主要
19、性能参数为流量、扬程、功率和效率。一流量 泵的流量(又称送液能力)是指单位时间内泵所输送的液体体积。用符号Q表示,单位为/或m3/。二扬程泵的扬程(又称泵的压头)是指单位重量液体流经泵后所获得的能量,用符号表示,单位为米液柱。离心泵压头的大小,取决于泵的结构(如叶轮直径的大小,叶片的弯曲情况等)、转速及流量。泵的压头可用实验方法测定。在泵的进出口处分别安装真空表和压力表,在真空表与压力表之间列柏努得方程式,即 或 式中 pM 压力表读出压力(表压),N/m2; pV真空表读出的真空度,N/m2; u1、u2吸入管、压出管中液体的流速,m/s; Hf两截面间的压头损失,m。由于两截面之间管路很短
20、,其压头损失Hf可忽略不计。若以HM及HV分别表示压力有和真空表上的读数,以米液柱(表压)计。则上式可改写为 三 效率液体在泵内流动的过程中,由于泵内有各种能量损失,泵轴从电机得到的轴功率,没有全部为液体所获得。泵的效率就是反映这种能量损失的。泵内部损失主要有三种,即容积损失、水力损失及机械损失,现将其产生原因分述如下:容积损失容积损失是由于泵的泄漏造成的。离心泵在运转过程中,有一部分获得能量的高压液体,通过叶轮与泵壳之间的间隙流回吸入口。因此,从泵排出的实际流量要比理论排出流量为低,其比值称为容积效率1。水力损失水力损失是由于流体流过叶轮、泵壳时,由于流速大小和方向要改变,且发生冲击,而产生
21、的能量损失。所以泵的实际压头要比泵理论上所能提供的压头为低,其比值称为水力效率2。机械损失机械损失是泵在运转时,在轴承、轴封装置等机械部件接触处由于机械磨擦而消耗部分能量,故泵的轴功率大于泵的理论功率(即理论压头与理论流量所对应的功率)。理论功率与轴功率之比称为机械效率3。泵的总效率(又称效率)等于上述三种效率的乘积,即 123 对离心泵来说,效率一般约为0.60.85左右,大型泵可达0.90。四功率 泵的有效功率可写成 NeQHpg 式中 Ne泵的有效功率,W; Q泵的流量,m3/s; H泵的压头,m ; p液体的密度,kg/m3; g重力加速度,m/s2。已知g=9.81m/s2;1kW=
22、1000W,则有效功率可用kW单位表示,即 由于有容积损失、水力损失与机械损失,所以泵的轴功率N要大于液体实际得到的有效功率,即 泵在运转时可能发生超负荷,所配电动机的功率应比泵的轴功率大。在机电产品样本中所列出的泵的轴功率,除非特殊说明以外,均系指输送清水时的数值2-13 离心泵的特性曲线 一、离心泵的特性曲线 压头、流量、功率和效率是离心泵的主要性能参数。这些参数之间的关系,可通过实验测定。离心泵生产部门将其产品的基本性能参数用曲线表示出来,这些曲线称为离心泵的特性曲线。以供使用部门选泵和操作时参考。特性曲线是在固定的转速下测出的,只适用于该转速,故特性曲线图上都注明转速n的数值,国产 4
23、B20型离心泵在n=2900r/min时特性曲线。图上绘有三种曲线,即Q曲线Q曲线表示泵的流量Q和压头的关系。离心泵的压头在较大流量范围内是随流量增大而减小的。不同型号的离心泵,Q曲线的形状有所不同。如有的曲线较平坦,适用于压头变化不大而流量变化较大的场合;有的曲线比较陡峭,适用于压头变化范围大而不允许流量变化太大的场合。Q曲线Q曲线表示泵的流量Q和轴功率的关系,随Q的增大而增大。显然,当Q=0时,泵轴消耗的功率最小。因此,启动离心泵时,为了减小启动功率,应将出口阀关闭。Q曲线Q曲线表示泵的流量Q和效率的关系。开始随Q的增大而增大,达到最大值后,又随Q的增大而下降。该曲线最大值相当于效率最高点
24、。泵在该点所对应的压头和流量下操作,其效率最高。所以该点为离心泵的设计点。选泵时,总是希望泵在最高效率工作,因为在此条件下操作最为经济合理。但实际上泵往往不可能正好在该条件下运转,因此,一般只能规定一个工作范围,称为泵的高效率区。高效率区的效率应不低于最高效率的92%左右。泵在铭牌上所标明的都是最高效率下的流量,压头和功率。离心泵产品目录和说明书上还常常注明最高效率区的流量、压头和功率的范围等。二离心泵的转数对特性曲线的影响离心泵的特性曲线是在一定转速下测定的。当转速由n1改变为n2时,其流量、压头及功率的近似关系为 , , 上式称为比例定律,当转速变化小于20%时,可认为效率不变,用上式进行
25、计算误差不大。三叶轮直径对特性曲线的影响当叶轮直径变化不大,转速不变时,叶轮直径、流量、压头及功率之间的近似关系为 , , 上式称为切割定律。四液体物理性质的影响泵生产部门所提供的特性曲线是用清水作实验求得的。当所输送的液体性质与水相差较大时,要考虑粘度及密度对特性曲线的影响。粘度的影响 所输送的液体粘度愈大,泵体内能量损失愈多。结果泵的压头、流量都要减小,效率下降,而轴功率则要增大,所以特性曲线改变。密度的影响 离心泵的压头与密度无关,这可以从概念上加以说明。液体在一定转速下,所受的离心力与液体的密度成正比。但液体由于离心力的作用而取得的压头,相当于由离心力除以叶轮出口截面积所形成的压力,再
26、除以液体密度和重力加速度的乘积。这样密度对压头的影响就消除了。但是,泵的轴功率随液体密度而改变。因此,当被输送液体的密度与水不同时,不能使用该泵所提供的曲线,而应重新计算。以20oC的水为介质,在泵的转速为2900r/min时,测定某台离心泵性能时,某次实验的数据如下:流量12m3/h,泵出口处压强表的读数为0.37MPa,泵入口处真空表读数为0.027MPa,轴功率为2.3Kw。若压强表和真空表两测压口间垂直距离为0.4m,且泵的吸入管路和排出管路直径相同。测定装置如附图。求:这次实验中泵的压头和效率。解:(1)泵的压头以真空表和压强表所在的截面为411和22,列出以单位重量为衡算基准的伯努
27、利方程,即其中,p1=-2.7104Pa(表压), p2=3.7105Pa(表压)因测压口之间距离较短,流动阻力可忽略,即Hf1-20;故泵的压头为:H(2)泵的效率,即58.1。分析说明:在本实验中,若改变出口阀的开度,测出不同流量下的若干组有关数据,可按上述方法计算出相应的H及值,并将H-Q、N-Q、-Q关系标绘在坐标纸上,即可得到该泵在n2900r/min下的特性曲线。3-14 离心泵的工作点 与流量调节当离心泵安装在一定的管路系统中工作时,其压头和流量不仅与离心泵本身的特性有关,而且还取决于管路的工作特性。一管路特性曲线将泵的HQ曲线与管路的Qe曲线绘在同一坐标系中,两曲线的交点称为泵
28、的工作点M。如图2-4所示。图2-2 管路特性曲线和泵的工作点1说明 (1) 泵的工作点由泵的特性和管路的特性共同决定,可通过联立求解泵的特性方程和管路的特性方程得到;(2) 安装在管路中的泵,其输液量即为管路的流量;在该流量下泵提供的扬程也就是管路所需要的外加压头。因此,泵的工作点对应的泵压头和流量既是泵提供的,也是管路需要的;(3) 工作点对应的各性能参数()反映了一台泵的实际工作状态。当离心泵安装在特定管路系统中工作时,液体要求泵供给的压头可由柏努利方程式求得,即 上式中 与管路中液体流量无关,在输液高度和压力不变的情况下为一常数,以符号表示。若贮槽与受槽的截面都很大,该处流速与管路相比
29、可忽略不计,则 ,上式可简化为 此式中压头损失为 式中Q为管路系统的流量,m3/s对于特定的管路系统,l、le、d均为定值,湍流时摩擦系数的变化也很小,令 BQ2 由上式可知,在特定管路中输送液体时,所需压头随液体流量Q的平方而变化。将此关系描绘在坐标图上,即得图2-2 Q曲线,称为管路特性曲线。它表示在特定的管路中,压头随流量的变化关系。此线的形状与管路布置及操作条件有关,而与泵的性能无关。二工作点 输送液体是靠泵和管路相互配合完成的。一台离心泵安装在一定的管路系统中工作,包括阀门开度也一定时,就有一定的流量与压头。此流量与压头是离心泵特性曲线与管路特性曲线交点处的流量与压头。此点称为泵的工
30、作点。显然,该点所表示的流量Q与压头,既是管路系统所要求,又是离心泵所能提供的。若该点所对应效率是在最高效率区,则该工作点是适宜的三 流 量 调 节 泵在实际操作过程中,经常需要调节流量。从泵的工作点可知,调节流量实质上就是改变离心泵的特性曲线或管路特性曲线,从而改变泵的工作点的问题。所以,离心泵的流量调节,不外从两方面考虑,其一是在排出管线上装适当的调节阀,以改变管路特性曲线;其二是改变离心泵的转速或改变叶轮外径,以改变泵的特性曲线,两者均可以改变泵的工作点,以调节流量。1改变阀门的开度 改变阀门开度以调节流量,实质是用开大或关小阀门的方法来改变管路特性曲线。当阀门关小时,管路局部阻力加大,
31、管路特性曲线变陡,泵的工作点由移到。流量由QA减小到QB。当阀门开大时,管路局部阻力减小,管路特性曲线变得平坦一些,工作点移到,流量加大到Q。2改变泵的转数改变离心泵的转数以调节流量,实质上是维持管路特性曲线不变,而改变泵的特性曲线,泵原来的转数为nA,工作点,要把泵的转数提高到nB,泵的特性曲线就上移到nB位置,工作点由移到,流量和压头都相应加大。若把泵的转数降到nc,泵的特性曲线就移到nc位置,工作点移到,流量和压头都相应地减小。为了达到改变转数以调节流量,离心泵可以采用内燃机、变速装置及蒸汽透平等带动。3车削叶轮的外径车削叶轮的外径是离心泵调节流量的一种独特方法。在车床上将泵叶轮的外径车
32、小,这时叶轮直径、流量、压头和功率之间关系,可按切割定律计算。4并联操作图2-3 泵的并联操作当一台泵的流量不够时,可以用两台泵并联操作,以增大流量。一台泵的特性曲线如图2-3中曲线所示。两台相同的泵并联操作时,其联合特性曲线的作法是在每一个压头条件下,使一台泵操作时的特性曲线上的流量增大一倍而得出特性曲线如图中曲线。但需要注意,对于同一管路,其并联操作时泵的流量不会增大一倍。因为两台泵并联后,流量增大,管路阻力亦增大。原来单个泵的工作点为,并联后移至点。显然点的流量(2Q)不是点流量(QI)的两倍,除非管路系统没有能量损失。 5串联操作图2-4 泵的串联操作 当生产上需要利用原有泵提高泵的压
33、头时,可以考虑将泵串联使用两台相同型号的泵串联工作时,每台泵的压头和流量也是相同的。因此,在同样的流量下,串联泵的压头为单台泵的两倍。将单台泵的特性曲线的纵坐标加倍,横坐标保持不变,可求得两台泵串联后的联合特性曲线 。由图2-4中可知,单个泵的工作点为,串联后移至点。显然点的压头(H),并不是点的压头(HI)的两倍6流量调节方法的比较采用什么方法来调节流量,关系到能耗问题。当转速不变采用阀门来调节流量,这种方法简便,并为工厂广泛采用。但关小阀门会使阻力加大,因而需要多消耗一部分能量以克服附加的阻力,这是不经济的。当采用改变转速调节流量时,可使管路特性曲线保持来变,流量随转速下降而减小,动力消耗
34、也相应降低,因而采用改变转速调节流量节能效果是显著的。但需要变速装置或价格昂贵的变速原动机,且难以做到流量连续调节,这是其主要的缺点。此外,减小叶轮直径可改变泵的特性曲线,但其主要缺点是可调节流量范围不大,且直径减小不当还会降低泵的效率。在输送流体量不大的管路中,一般都用阀门来调节流量,只有在输液量很大的管路才考虑使用调速的方法。例 2-2 在内径为150mm、长度为280m的管路系统中,用离心泵输送甲苯。已知该管路局部阻力的当量长度为85m;摩擦系数可取为0.03。离心泵的特性曲线如附图所示。若 为20m甲苯柱,试求离心泵的工作点。解: BQ2因 =12000所以 20+12000Q2根据上
35、式可绘管路特性曲线。由图中查得工作点的流量为74m3/h,压头为25.5m甲苯柱。2-15离心泵的气蚀现象与安装高度一、气蚀现象在0-0、1-1(泵入口)截面间列柏努力方程 p0一定,当Hg或吸入管路内液体流速与压头损失增大,则p1越小即Hg增大,泵入口处的压力p1越小。(吸力越大),当叶轮入口最低压力p1降到液体在该处温度下的饱和蒸汽压pv时,液体将有部分汽化,小汽泡随液体流到叶轮内压力高于pv区域,小汽泡便会突然破裂,其中的蒸汽会迅速凝结,周围的液体将以高速冲向刚消失的汽泡中心,造成很高的局部冲击压力,冲击叶轮,发生噪音,引起震动,金属表面受到压力大、频率高的冲击而剥蚀,使叶轮表面呈现海绵
36、状,这种现象称为“气蚀”。开始汽蚀时,汽蚀区域小,对泵的正常工作没有明显影响,当汽蚀发展到一定程度时,汽泡产生量较大,液体流动的连续性遭到破坏,泵的Q、H、均明显下降,不能正常操作,为避免汽蚀发生,泵的安装高度不能太高。二汽蚀余量汽蚀余量h是指离心泵入口处,液体的静压头 与动压头 之和超过液体在操作温度下的饱和蒸汽压头pv/pg的某一最小指定值,即 此式中 汽蚀余量,m; pv操作温度下液体饱和蒸汽压,N/m2。三.允许安装高度在贮槽液面和吸入口间列柏努力方程式得 将上两式合并可导出汽蚀余量 与允许安装高度Hg之间关系为 式中p0为液面上方的压力,若为敞口液面则p0=pa。应当注意,泵性能表上
37、的 值也是按输送20水而规定的。当输送其它液体时,需进行校正。由上可知,只要已知汽蚀余量,便可确定泵的安装高度。例2-3 用油泵从密闭容器里送出30的丁烷。容器内丁烷液面上的绝对压力为。液面降到最低时,在泵入口中心线以下2.8m。丁烷在30时的密度为580kg/m3,饱和蒸汽压为。泵入口管路的压头为1.5m H2O。所选用的泵汽蚀余量为3m。试问这个泵能否正常工作?解: 由于实际安装高度大于允许安装高度,不能保证整个输送过程中不产生汽蚀现象。为保证泵正常操作,应使泵入口线不高于最低液面2.4m,即从原来的安装位置至少降低0.4m;或提高容器内的压力。2-16离心泵的类型与选用一、离心泵的类型离
38、心泵的种类很多,常用的类型有清水泵、耐腐蚀泵、油泵、和杂质泵。1 清水泵 (用于工业生产输送物理、化学性质与清水类似的液体),以前我们用B表示,称为B型离心泵,3B33A,3表示泵吸入口直径为3英寸,B表示单级悬臂式清水泵,33表示泵的扬程,A表示该型号泵的叶轮外径比基本型号小一级。D型-国产多级泵的系列代号,叶轮级数一般为29级。Sh型-国产双吸泵2s型单级单吸式离心泵系列是我国第一个国际标准(ISO)设计、研制的,适用于t80、d:40200mm、Q:6.3400m3/h、H:5125m。2 耐腐蚀泵:(输送酸、碱、盐等腐蚀性液体时)P74,长期以来使用F单级单吸式离心泵。近年来已推出许多
39、新产品。3 油泵:(最大特点:密封性能必须高,以免易燃液体泄漏),过去一直使用Y型离心油泵,如100Y-120x2,100 表示入口直径,120表示单级的扬程,2表示叶轮的级数。但近年来已生产出石油化工流程泵系列产品,其结构型式多,规格全,例如:SJA型单级悬臂式离心流程泵,输送介质温度为-196450。二选择 选择离心泵的基本原则,是以能满足液体输送的工艺要求为前提的。选择步骤为:确定输送系统的流量与压头 流量一般为生产任务所规定。根据输送系统管路的安排,用柏努利方程式计算管路所需的压头。选择泵的类型与型号 根据输送液体性质和操作条件确定泵的类型。按已确定的流量和压头从泵样本产品目录选出合适
40、的型号。需要注意的是,如果没有适合的型号,则应选定泵的压头和流量都稍大的型号;如果同时有几个型号适合,则应列表比较选定。然后按所选定型号,进一步查出其详细性能数据。校核泵的特性参数 如果输送液体的粘度和密度与水相差很大,则应核算泵的流量与压头及轴功率。例2-4 今有一输送河水的任务,要求将某处河水以90m3/h的流量,输送到一高位槽中,已知高位槽水面高出河面10m,管路系统的总压头损失为7mH2O。试选择一适当的离心泵并估算由于阀门调节而多消耗的轴功率。解 根据已知条件,选用清水泵。今以河面1-1截面为基准面, 2-2截面高位槽水面,列柏努利方程式,则 =10+0+0+7=17m根据已知流量Q
41、=90m3/h和H可选4B20型号的泵。由本书附录查得该泵性能为:流量90m3/h;压头20mH2O;轴功率6.36kW;效率78%。由于所选泵压头较高,操作时靠关小阀门调节,因此多消耗功率为: 减轻泵在运行中汽蚀破坏的方法汽蚀是液力机械中常见的故障之一,由于进口池或管路设计不合理,以及未充分考虑大气压、温度、介质气化压力的变化等常常因为汽蚀而引起泵的过早失效。已经安装服役的泵几乎没有办法完全克服泵本身汽蚀性能差造成的汽蚀破坏(泵手册第一分册)。本文将主要介绍减轻在役泵汽蚀破坏的方法,这些方法在实际应用中均取得了明显的效果。一、 汽蚀的产生原因汽蚀是由液体汽化引起的,液体分子逸出液体表面,成为
42、气体分子的过程,称为“汽化”。液体的汽化程度与压力的大小、温度高低有关。溶解于液体中的气体,在压力和温度变化时也会释放出来,形成汽穴。当液体内部压力下降,低于液体在该温度下的饱和蒸汽压时,在局部区域形成汽泡或汽穴;而在压力升高的地方汽泡突然被四周的压力压破,液流因惯性以极高的速度向汽泡的中心挤压,对设备造成水力冲击。这种微泡的产生、溃裂以及对过流表面产生物理和化学作用的整个过程称为汽蚀。如果液体中不含任何杂质,即使在压力很低时也不会发生汽蚀。国外的汽蚀研究者通过试验认为,超高纯水的抗拉强度(即产生空穴的极限)远远超过通常的金属材料的抗拉强度。但通常的液体中总是含气体或固体,这些杂质成为汽蚀核子
43、,在一定条件下诱发空穴的发生。含砂水流由于水与砂的比重不同,砂粒运动轨迹与流线脱离,可能会加速汽蚀的发生。笔者在论文“泥浆泵的汽蚀及抗磨抗汽蚀材料” (润滑与密封1993)中进行了详细介绍。二、 在役泵的汽蚀诊断方法泵的使用者通常无法利用制造厂流量一定时扬程的下降来判定汽蚀是否发生的方法。在役泵是否发生汽蚀,除在汽蚀破坏后观察法外可以采用(1)超声波法;(2)泵体外噪声法;(3)振动法等方法判断。观察法:破坏表面观察法是在事后观察方法,根据破坏的表面形状来进行判断。由于汽蚀、铸造气孔、冲刷磨损、腐蚀等均会造成金属表面形状与理想形状的不同。汽蚀破坏的金属表面通常显现蜂窝状,它是由局部高速水打击金属而使金属表面疲劳破坏,所以蜂窝孔一般是与外部相通的,大多数的坑槽与金属表面垂直。铸造缺陷的疏松往往深藏在金属内部,有时由于水流的冲刷将金属内部的疏松、气孔呈于表面而误认为是汽蚀,但当我们用机械的方法继续去处表面时会发现其内部仍有气孔。冲刷磨损痕迹往往出现与水流方向相同的沟槽,但要注意有时有水流旋涡。噪声法:泵体外噪声法比较简单,可