1、课题:反比例函数复习教学目标知识与技能1、通过对实际问题中数量关系得探索,掌握用函数的思想去研究其变化规律2、结合具体情境体会和理解反比例函数的意义,并解决与它们有关的简单的实际问题3、让学生参与知识的发现和形成过程,强化数学的应用与建模意识,提高分析问题和解决问题的能力。过程与方法反思在具体的问题中探索数量关系和变化的过程,理解反比例函数的概念,领会反比例函数作为一种教学模型的意义。情感态度与价值观培养学生观察、分析、归纳的能力,感悟数形结合的数学思想方法,体会函数在实际问题中的应用价值。重点反比例函数的图像和性质在实际问题中的运用。难点运用函数的性质和图像解综合题,要善于识别图形,勤于思考
2、,获取有用的信息,灵活的运用数学思想方法。教 学 过 程教学设计 与 师生行为备 注第一步;知识回顾 1、什么是反比例函数?2、你能回顾总结一下反比例函数的图像性质特征吗?与同伴交流。第二步;练一练1 、 反比例函数y=-的图象是 ,分布在第 象限,在每个象限内, y都随x的增大而 ;若 p1 (x1 , y1)、p2 (x2 , y2) 都在第二象限且x1x2 , 则y1 y2。3、已知反比例函数 ,若X1 x2 ,其对应值y1,y2 的大小关系是 4、如图在坐标系中,直线y=x+ k与双曲线 在第一象限交与点A, 与x轴交于点C,AB垂直x轴,垂足为B,且SAOB1 1)求两个函数解析式2
3、)求ABC的面积6、已知反比例函数的图象经过点 ,若一次函数y=x+1的图象平移后经过该反比例函数图象上的点B(2,m),求平移后的一次函数的图象与x轴的交点坐标。第三步:课后小结:1、本节复习课主要复习本章学生应知应会的概念、图像、性质、应用等内容,夯实基础提高应用。2、充分利用“图象”这个载体,随时随地渗透数形结合的数学思想.作业: 基础达标验收卷一、 选择题:1. 已知反比例函数的图象经过点,则函数可确定为( )A. B. C. D. 2. 如果反比例函数的图象经过点,那么下列各点在此函数图象上的是( )A. B. C. D. 3. 如右图,某个反比例函数的图象经过点P,则它的解析式为(
4、 )A. B. C. D. 4. 如右图是三个反比例函数,在x轴上方的图象,由此观察得到、的大小关系为( )A. B. C. D. 5. 已知反比例函数的图象上有两点、且,那么下列结论正确的是( )A. B. C. D与之间的大小关系不能确定6、已知反比例函数的图象如右图,则函数的图象是下图中的( ) 7、已知关于x的函数和(k0),它们在同一坐标系内的图象大致是( ) 8、如图,点A是反比例函数图象上一点,ABy轴于点B,则AOB的面积是( )A. 1B. 2C. 3D. 49、 某闭合电路中,电源的电压为定值,电流I(A)与电阻R()成反比例. 右图表示的是该电路中电流I与电阻R之间的图象
5、,则用电阻R表示电流I的函数解析式为( )A. B. C. D. 二、填空题:1、我们学习过反比例函数. 例如,当矩形面积S一定时,长a是宽b的反比例函数,其函数关系式可以写为(S为常数,S0).请你仿照上例另举一个在日常生活、生产或学习中具有反比例函数关系的量的实例,并写出它的函数关系式.实例:_;函数关系式:_.1. 右图是反比例函数的图象,那么k与0的大小关系是.2. 点在双曲线上,则k=_.3. 近视眼镜的度数y(度)与镜片焦距x(米)成反比例. 已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y与镜片焦距x之间的函数关系式是_.4. 已知反比例函数的图象经过点,则a=_.三、解
6、答题:1. 已知一次函数的图象与反比例函数的图象在第一象限交于点,求k,n的值.2. 已知反比例函数的图象与一次函数的图象相交于点.(1)分别求这两个函数的解析式.(2)试判断点关于x轴的对称点是否在一次函数的图象上.3. 反比例函数的图象经过点.(1)求这个函数的解析式;(2)请判断点是否在这个反比例函数的图象上,并说明理由.4. 在压力不变的情况下,某物承受的压强P(Pa)是它的受力面积S(m2)的反比例函数,其图象如右图所示.(1)求P与S之间的函数关系式;(2)求当S=0.5m2时物体所受的压强P.如图,反比例函数与一次函数的图象交于A、B两点.(1)求A、B两点的坐标;(2)求AOB
7、的面积.能力提高练习一、学科内综合题1. 如右图,OPQ是边长为2的等边三角形,若反比例函数的图象过点P,则它的解析式是_.2. 已知反比例函数和一次函数.(1)若一函数和反比例函数的图象交于点,求m和k的值.(2)当k满足什么条件时,这两个函数的图象有两个不同的交点?(3)当时,设(2)中的两个函数图象的交点分别为A、B,试判断A、B两点分别在第几象限?AOB是锐角还是钝角(只要求直接写出结论)?二、学科间综合题3. 若一个圆锥的侧面积为20,则下图中表示这个圆锥母线长l与底面半径r之间函数关系的是( ) 三、实际应用题4、某单位为响应政府发出的全民健身的号召,打算在长和宽分别为20米和11米的矩形大厅内修建一个60平方米的矩形健身房ABCD. 该健身房的四面墙壁中有两侧沿用大厅的旧墙壁(如图为平面示意图),已知装修旧墙壁的费用为20元/平方米,新建(含装修)墙壁的费用为80元/平方米. 设健身房的高为3米,一面旧墙壁AB的长为x米,修建健身房的总投入为y元.(1)求y与x的函数关系式;(2)为了合理利用大厅,要求自变量x必须满足8x12. 当投入资金为4800元时,问利用旧墙壁的总长度为多少米?