1、4.4 一次函数的应用(3) 教学设计一、学生起点分析在前几节课,学生已经分别学习了一次函数,一次函数的图象,一次函数图象的特征,并且了解到一次函数的应用十分广泛在此基础上,通过生活中的实际问题进一步探讨一次函数图象的应用二、教学任务分析本节课是北师大版义务教育教科书八年级(上)第四章一次函数第四节的第3课时,主要是利用两个一次函数的图象解决一些生活中的实际问题和前一课时一样,教科书注重从函数图象中获取信息从而解决具体问题,关注数形结合思想的揭示,关注形象思维能力的发展,同时,这为今后学习用图象法解二元一次方程组打下基础 教学目标1.进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的
2、实际问题;2.在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维;3.在解决实际问题过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识4.在现实问题的解决中,使学生初步认识数学与人类生活的密切联系,从而培养学生学习数学的兴趣 教学重点一次函数图象的应用 教学难点从函数图象中正确读取信息三、教法学法1教学方法:“问题情境建立模型应用与拓展”2课前准备:教具:教材,课件,电脑学具:教材,练习本,铅笔,直尺四、教学过程:本节课设计了五个环节:第一环节:情境引入;第二环节:问题解决;第三环节:反馈练习;第四环节:课时小结;第五环节:作业布置第二环节:问题解决内容1:例1小
3、聪和小慧去某风景区游览,约好在“飞瀑”见面,上午7:00小聪乘电动汽车从“古刹”出发,沿景区公路去“飞瀑”,车速为 ,小慧也于上午7:00从“塔林”出发,骑电动自行车沿景区公路去“飞瀑”,车速为(1)当小聪追上小慧时,他们是否已经过了“草甸”?(2)当小聪到达“飞瀑”时,小慧离“飞瀑”还有多少千米?分析: 当小聪追上小慧时,说明他们两个人的什么量是相同的?是否已经过了“草甸”该用什么量来表示?你会选择用哪种方式来解决?图象法?还是解析法?解:设经过t时,小聪与小慧离“古刹”的路程分别为、,由题意得:, 将这两个函数解析式画在同一个直角坐标系上,观察图象,得两条直线 ,的交点坐标为(1,36)这
4、说明当小聪追上小慧时,即离“古刹”,已超过,也就是说,他们已经过了“草甸”当小聪到达“飞瀑”时,即,此时 所以小慧离“飞瀑”还有4542.5=2.5(km)思考:用解析法如何求得这两个问题的结果?小聪、小慧运行时间与路程之间的关系式分别是什么(小聪的解析式为 ,小慧的解析式为)?活动目的:培养学生的识图能力和探究能力,调动学生学习的自主意识通过问题串的精心设计,引导学生根据实际问题建立适当的函数模型,利用该函数图象的特征解决这个问题在此过程中渗透数形结合的思想方法,发展学生的数学应用能力说明:在这个环节的学习过程中,如果学生入手感到困难,可用以下问题串引导学生进行分析。两个人是否同时起步? 在
5、两个人到达之前所用时间是否相同?所行驶的路程是否相同?出发地点是否相同?两个人的速度各是多少?这个问题中的两个变量是什么?它们之间是什么函数关系?如果用表示路程,表示时间,那么他们的函数解析式是一样?他们各自的解析式分别是什么?内容2:海岸公海AB深入探究例2 我边防局接到情报,近海处有一可疑船只正向公海方向行驶边防局迅速派出快艇 追赶(如图),下图中, 分别表示两船相对于海岸的距离(海里)与追赶时间(分)之间的关系根据图象回答下列问题:(1)哪条线表示到海岸的距离与时间之间的关系?解:观察图象,得当时,距海岸0 n mile,即,故表示到海岸的距离与追赶时间之间的关系;(2),哪个速度快?解
6、:从0增加到10时,的纵坐标增加了2,而的纵坐标增加了5,即10 min内,行驶了2海里,行驶了5 n mile,所以的速度快(3)15 min内能否追上?解:可以看出,当时,上对应点在上对应点的下方,(4)如果一直追下去,那么能否追上?解:如图 ,相交于点P因此,如果一直追下去,那么一定能追上(5)当逃到离海岸海里的公海时,将无法对其进行检查照此速度,能否在逃到公海前将其拦截?解:从图中可以看出,与交点P的纵坐标小于,这说明在逃入公海前,我边防快艇能够追上活动目的:培养学生良好的识图能力,进一步体会数与形的关系,建立良好的知识联系说明:学生在教师的引导下,逐步形成了良好的识图能力第三环节:反
7、馈练习内容:观察甲、乙两图,解答下列问题1填空:两图中的( )图比较符合传统寓言故事龟免赛跑中所描述的情节2根据1中所填答案的图象填写下表:线型项目主人公(龟或兔)到达时间(分)最快速度(米/分)平均速度(米/分)红线绿线3根据1中所填答案的图象求:(1)龟免赛跑过程中的函数关系式(要注明各函数的自变量的取值范围);(2)乌龟经过多长时间追上了免子,追及地距起点有多远的路程?4请你根据另一幅图表,充分发挥你的想象,自编一则新的“龟免赛跑”的寓言故事,要求如下:(1)用简洁明快的语言概括大意,不能超过200字;(2)图表中能确定的数值,在故事叙述中不得少于3个,且要分别涉及时间、路和速度这三个量
8、意图:旨在检测学生的识图能力,可根据学生情况和上课情况适当调整。说明:练习注意了问题的梯度,由浅入深,一步步引导学生从不同的图象中获取信息,对同学的回答,教师给予点评,对回答问题暂时有困难的同学,教师应帮助他们树立信心。5. 如图,与 分别表示步行与骑车同一路上行驶的路程与时间的关系(1)出发时与相距多少千米?S(千米)t(时)O 1022.5.57.50.531.5lBlA(2)走了一段路后,自行车发生故障,进行修理,所用的时间是多少小时?(3)出发后经过多少小时与相遇? (4) 若的自行车不发生故障,保持出发时的速度前进,那么经过多少时间与相遇?相遇点离的出发点多远?你能用哪些方法解决这个
9、问题?在图中表示出这个相遇点6.甲乙两班参加植树活动乙班先植树30棵,然后甲班才开始与乙班一起植树设甲班植树的总量为(棵),乙班植树的总量为(棵),两班一起植树所用的时间(从甲班开始植树时计时)为(时),分别与之间的部分函数图象如图所示(1)当时,分别求与之间的函数关系式(2)如果甲乙两班均保持前6 h的工作效率,通过计算说明,当时,甲乙两班植树的总量之和能否超过260棵Oy(棵)x(时)36812030(3)如果6 h后,甲班保持前6 h的工作效率,乙班通过增加人数,提高了工作效率,这样继续植树2小时,活动结束当时,两班之间植树的总量相差20棵,求乙班增加人数后平均每小时植树多少棵第四环节:课时小结内容:本节课我们学习了一次函数图象的应用,在运用一次函数解决实际问题时,可以直接从函数图象上获取信息解决问题,当然也可以设法得出各自对应的函数关系式,然后借助关系式完全通过计算解决问题。通过列出关系式解决问题时,一般首先判断关系式的特征,如两个变量之间是不是一次函数关系?当确定是一次函数关系时,可求出函数解析式,并运用一次函数的图象和性质进一步求得我们所需要的结果意图:引导学生自己小结运用一次函数解决实际问题的主要方法。说明:让学生畅所欲言,相互进行补充,尽量用自己的语言进行归纳总结。