1、11 二次函数教学目标理解二次函数的有关概念,会列二次函数的表达式.重点:理解二次函数的有关概念.难点:理解二次函数的有关概念的应用.本节知识点通过具体问题引入二次函数的概念,在解决问题的过程中体会二次函数的意义教学过程(1)正方形边长为a(cm),它的面积s(cm2)是多少?(2)矩形的长是4厘米,宽是3厘米,如果将其长与宽都增加x厘米,则面积增加y平方厘米,试写出y与x的关系式请观察上面列出的两个式子,它们是不是函数?为什么?如果是函数,请你结合学习一次函数概念的经验,给它下个定义实践与探索例1 m取哪些值时,函数是以x为自变量的二次函数?分析 若函数是二次函数,须满足的条件是:解 若函数
2、是二次函数,则 解得 ,且因此,当,且时,函数是二次函数回顾与反思 形如的函数只有在的条件下才是二次函数探索 若函数是以x为自变量的一次函数,则m取哪些值?例2写出下列各函数关系,并判断它们是什么类型的函数(1)写出正方体的表面积S(cm2)与正方体棱长a(cm)之间的函数关系;(2)写出圆的面积y(cm2)与它的周长x(cm)之间的函数关系;(3)某种储蓄的年利率是1.98%,存入10000元本金,若不计利息,求本息和y(元)与所存年数x之间的函数关系;(4)菱形的两条对角线的和为26cm,求菱形的面积S(cm2)与一对角线长x(cm)之间的函数关系解 (1)由题意,得 ,其中S是a的二次函
3、数;(2)由题意,得 ,其中y是x的二次函数;(3)由题意,得 (x0且是正整数),其中y是x的一次函数;(4)由题意,得 ,其中S是x的二次函数例3正方形铁片边长为15cm,在四个角上各剪去一个边长为x(cm)的小正方形,用余下的部分做成一个无盖的盒子(1)求盒子的表面积S(cm2)与小正方形边长x(cm)之间的函数关系式;(2)当小正方形边长为3cm时,求盒子的表面积解 (1); (2)当x=3cm时,(cm2)课堂练习1下列函数中,哪些是二次函数?(1)(2)(3) (4)2当k为何值时,函数为二次函数?3已知正方形的面积为,周长为x(cm)(1)请写出y与x的函数关系式;(2)判断y是
4、否为x的二次函数课堂小结形如的函数叫做二次函数.本课课外作业A组1 已知函数是二次函数,求m的值2 已知二次函数,当x=3时,y= -5,当x= -5时,求y的值3 已知一个圆柱的高为27,底面半径为x,求圆柱的体积y与x的函数关系式若圆柱的底面半径x为3,求此时的y4 用一根长为40 cm的铁丝围成一个半径为r的扇形,求扇形的面积y与它的半径x之间的函数关系式这个函数是二次函数吗?请写出半径r的取值范围B组5对于任意实数m,下列函数一定是二次函数的是( )A B C D 6下列函数关系中,可以看作二次函数()模型的是 ( )A 在一定的距离内汽车的行驶速度与行驶时间的关系B 我国人口年自然增长率为1%,这样我国人口总数随年份的变化关系C 竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)D 圆的周长与圆的半径之间的关系