收藏 分销(赏)

八年级数学下册 1.3不等式的解集示范教案1 北师大版.doc

上传人:s4****5z 文档编号:7635359 上传时间:2025-01-10 格式:DOC 页数:6 大小:150KB 下载积分:10 金币
下载 相关 举报
八年级数学下册 1.3不等式的解集示范教案1 北师大版.doc_第1页
第1页 / 共6页
八年级数学下册 1.3不等式的解集示范教案1 北师大版.doc_第2页
第2页 / 共6页


点击查看更多>>
资源描述
第三课时 ●课 题 §1.3 不等式的解集 ●教学目标 (一)教学知识点 1.能够根据具体问题中的大小关系了解不等式的意义. 2.理解不等式的解、不等式的解集、解不等式这些概念的含义. 3.会在数轴上表示不等式的解集. (二)能力训练要求 1.培养学生从现实生活中发现并提出简单的数学问题的能力. 2.经历求不等式的解集的过程,发展学生的创新意识. (三)情感与价值观要求 从实际问题抽象为数学模型,让学生认识数学与人类生活的密切联系及对人类历史发展的作用,通过探索求不等式的解集的过程,体验数学活动充满着探索与创造. ●教学重点 1.理解不等式中的有关概念. 2.探索不等式的解集并能在数轴上表示出来. ●教学难点 探索不等式的解集并能在数轴上表示出来. ●教学方法 引导学生探索学习法. ●教具准备 投影片一张 记作(§1.3 A) ●教学过程 Ⅰ.创设问题情境,引入新课 [师]上节课,我们对照等式的性质类比地推导出了不等式的基本性质,并且讨论了它们的异同点.下面我找一位同学简单地回顾一下不等式的基本性质. [生]不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变. 不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变. 不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变. [师]很好. 在学习了等式的基本性质后,我们利用等式的基本性质学习了一元一次方程,知道了方程的解、解方程等概念,大家还记得这些概念吗? [生]记得. 能够使方程两边的值相等的未知数的值就是方程的解. 求方程的解的过程,叫做解方程. [师]非常好.上节课我们用类推的方法,仿照等式的基本性质推导出了不等式的基本性质,能不能按此方法推导出不等式的解和解不等式呢?本节课我们就来试一试. Ⅱ.新课讲授 1.现实生活中的不等式. 燃放某种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10 m以外的安全区域.已知导火线的燃烧速度为以0.02 m/s,人离开的速度为4 m/s,那么导火线的长度应为多少厘米? [师]分析:人转移到安全区域需要的时间最少为秒,导火线燃烧的时间为秒,要使人转移到安全地带,必须有:>. 解:设导火线的长度应为x cm,根据题意,得 > ∴x>5. 2.想一想 (1)x=5,6,8能使不等式x>5成立吗? (2)你还能找出一些使不等式x>5成立的x的值吗? [生](1)x=5不能使x>5成立,x=6,8能使不等式x>5成立. (2)x=9,10,11…等比5大的数都能使不等式x>5成立. [师]由此看来,6,7,8,9,10…都能使不等式成立,那么大家能否根据方程的解来类推出不等式的解呢?不等式的解唯一吗? [生]可以.能使不等式成立的未知数的值,叫做不等式的解.如6、7、8都是x>5的解.所以不等式的解不唯一,有无数个解. [师]正因为不等式的解不唯一,因此把所有满足不等式的解集合在一起,构成不等式的解集(solution set). 请大家再类推出解不等式的概念. [生]求不等式解集的过程叫解不等式. 3.议一议. 请你用自己的方式将不等式x>5的解集和不等式x-5≤-1的解集分别表示在数轴上,并与同伴交流. [生]不等式x>5的解集可以用数轴上表示5的点的右边部分来表示(图1-3),在数轴上表示5的点的位置上画空心圆圈,表示5不在这个解集内. 图1-3 不等式x-5≤-1的解集x≤4可以用数轴上表示4的点及其左边部分来表示(图1-4),在数轴上表示4的点的位置上画实心圆点,表示4在这个解集内. 图1-4 [师]请大家讨论一下,如何把不等式的解集在数轴上表示出来呢?请举例说明. [生]如x>3, 即为数轴上表示3的点的右边部分,在数轴上表示3的点的位置上画空心圆圈,表示不包括这一点. x<3,可以用数轴上表示3的点的左边部分来表示,在这一点上画空心圆圈. x≥3,可以用数轴上表示3的点和它的右边部分来表示,在表示3的点的位置上画实心圆点,表示包括这一点. x≤3,可以用数轴上表示3的点和它的左边部分来表示,在表示3的点的位置上画实心圆点. 4.例题讲解 投影片(§1.3 A) 根据不等式的基本性质求不等式的解集,并把解集在数轴上表示出来. (1)x-2≥-4;(2)2x≤8 (3)-2x-2>-10 解:(1)根据不等式的基本性质1,两边都加上2,得x≥-2 在数轴上表示为: 图1-5 (2)根据不等式的基本性质2,两边都除以2,得x≤4 在数轴上表示为: 图1-6 (3)根据不等式的基本性质1,两边都加上2,得-2x>-8 根据不等式的基本性质3,两边都除以-2,得x<4 在数轴上表示为: 图1-7 Ⅲ.课堂练习 1.判断正误: (1)不等式x-1>0有无数个解; (2)不等式2x-3≤0的解集为x≥. 2.将下列不等式的解集分别表示在数轴上: (1)x>4;(2)x≤-1; (3)x≥-2;(4)x≤6. 1.解:(1)∵x-1>0,∴x>1 ∴x-1>0有无数个解.∴正确. (2)∵2x-3≤0,∴2x≤3, ∴x≤,∴结论错误. 2.解: 图1-8 Ⅳ.课时小结 本节课学习了以下内容 1.理解不等式的解,不等式的解集,解不等式的概念. 2.会根据不等式的基本性质解不等式,并把解集在数轴上表示出来. Ⅴ.课后作业 习题1.3 Ⅵ.活动与探究 小于2的每一个数都是不等式x+3<6的解,所以这个不等式的解集是x<2.这种解答正确吗? 解:不正确. 从解不等式的过程来看,根据不等式的基本性质1,两边都减去3,得x<3. 所以不等式x+3<6的解集为x<3,而不是x<2.当然小于2的值都在x<3这个范围内,它只是解集中的一部分,不是全部,所以不能以部分来代替全部. 因此说x<2是不等式x+3<6的解是错误的. ●板书设计 §1.3 不等式的解集 一、1.现实生活中的不等式(水费问题); 2.想一想(类推不等式中的有关概念); 3.议一议(如何把不等式的解集在数轴上表示出来); 4.例题讲解. 二、课堂练习 三、课时小结 四、课后作业 ●备课资料 参考练习 1.用不等式表示: (1)x的3倍大于或等于1; (2)x与5的和不小于0; (3)y与1的差不大于6; (4)x的小于或等于2. 2.不等式的解集x<3与x≤3有什么不同?在数轴上表示它们时怎样区别?分别在数轴上把这两个解集表示出来. 3.不等式x+3≥6的解集是什么? 参考答案 1.(1)3x≥1;(2)x+5≥0; (3)y-1≤6;(4)x≤2. 2.x<3指小于3的所有数,x≤3指小于3的所有数和3;在数轴上表示它们时,x<3不包括3,只是3左边的部分,x≤3不仅包括3左边的部分,而且还包括3. 在数轴上表示略. 3.x≥3.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服