1、贵州省贵阳市花溪二中八年级数学上册第五章:位置的确定教案 北师大版教学目标知识与技能:1、体会极坐标和直角坐标思想,并能解决一些简单的问题;2、能利用比例尺计算实际距离。3、发展学生的识图能力。情感与价值观:1、由学生感兴趣的图形激发学生的学习兴趣;2、通过运用位置确定的方法解决实际问题,体验到数学与人类生活是密切联系的。教学重点:会根据已知条件正确表示物体的位置。教学过程:一、创设情境,引入新课师:如图,如果用(0,0)表示点A,(1,0)表示点B,(1,2)表示点F。想一想:按照这个规律该如何表示其它点的位置:二、新授:1、学生分小组讨论,找出规律,然后回答交流:C(2,0),D(2,1)
2、,E(2,2),G(0,2),H(0,1)2、做一做:(投影P126,图5-3)如果用(0,0)表示点A的位置,用(2,1)表示点B的位置,那么(1)图中五角星五个顶点的位置如何表示?(2)图中五枚黑棋子的位置如何表示?(3)图中(6,1),(10,8)位置上的棋子分别是哪一枚?师:这里的数据有两个,一个表示水平方向与A点距离,另一个表示竖直方向上到A点的距离。3、例2(投影图5-4)借助刻度尺,量角器解决如下问题:(1)教学楼位于校门的北偏东多少度的方向上?到校门的图上距离约是多少厘米?实际距离呢?(2)某楼位于校门的南偏东约75的方向,到校门的实际距离约240米,说出这一地点的名称。(3)
3、如果用(2,5)表示图上校门的位置,那么图书馆的位置如何表示?(10,5)表示哪个地点的位置?同桌学生合作,利用刻度尺,量角器等工具,在书上测量并计算。(1)北偏52,图上距离为2.5cm,实际距离为250米(注意单位的换算)(2)240米=24000厘米,2400010000=2.4(厘米),经测量位于校门的南偏东70的方向上,到校门的距离240米的地点是实验楼。(3)图书馆的位置表示为(2,9)、(10,5)表示旗杆的位置。4、想一想:上例中,分别是通过何种方式表示一物体的位置呢?仅有一个数据,能准确确定教学楼的位置吗?让学生发表自己的看法后,师总结:两种方式:方位角和距离。与0点的水平距
4、离及与0点的竖直距离的两个数据。仅用一个数据不能准确地确定教学楼的位置。5、做一做,投影图5-5如果用(1,2)表示“怪兽”按图中箭头所指路线经过的第3个位置,那么你能用同样的方式表示出图中“怪兽”经过的其他几个位置吗?让学生思考后,分别让若干个学生说出其他几个位置的表示方法:(0,0)、(1,0)、(3、2)、(3、4)、(5、4)、(5、6)、(7、6)、(7、8)师:这里我们习惯上把表示水平上的距离的数据写在前面,表示竖直距离的数据写在后面,组成的一对数表示某点的位置。三、随堂练习:P128、1、2T1,四人小组合作,在图中画出条路线,写出表达方式。T2,先引导学生选择确定位置的方法,再
5、利用工具测量。四、小结:确定位置的两种方式。五、作业:(1)习题5、2(2)作业本5.2平面直角坐标系第一课时教学目标:【知识目标】1、理解平面直角坐标系以及横轴、纵轴、原点、坐标等的概念。2、认识并能画出平面直角坐标系。3、能在给定的直角坐标系中,由点的位置写出它的坐标。【能力目标】1、通过画坐标系,由点找坐标等过程,发展学生的数形结合意识,合作交流意识。2、通过对一些点的坐标进行观察,探索坐标轴上点的坐标有什么特点,纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,培养学生的探索意识和能力。【情感目标】由平面直角坐标系的有关内容,以及由点找坐标,反映平面直角坐标系与现实世界的密切联系
6、,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心。教学重点:1、 理解平面直角坐标系的有关知识。2、在给定的平面直角坐标系中,会根据点的位置写出它的坐标。3、由点的坐标观察,纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,说明坐标轴上点的坐标有什么特点。教学难点:1、 横(或纵)坐标相同的点的连线与坐标轴的关系的探究。2、 坐标轴上点的坐标有什么特点的总结。教学方法:讨论式学习法教学过程设计:一、导入新课 师 :同学们,你们喜欢旅游吗? 假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢?下面给出一张某市旅游景点的示意图,根据
7、示意图,回答以下问题:(图56)(1) 你是怎样确定各个景点位置的? (2) “大成殿”在“中心广场”南、西各多少个格?“碑林”在“中心广场”北、东各多少个格?(3) 如果以“中心广场”为原点作两条互相垂直的数轴、分别取向右、向上的方向为数轴的正方向,一个方格的边长看做一个单位长度,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?在上一节课,我们已经学习了许多确定位置的方法,主要学习用反映极坐标思想的定位方式,和用反映直角坐标思想的定位方式。在这个问题中大家看用哪种方法比较合适? 生 :用反映直角坐标思想的定位方式。师 :在上一节课中我们已经做过这方面的练习,现在应怎样表示呢?这就是本节课的
8、任务。 二、新课学习1、 平面直角坐标系、横轴、纵轴、横坐标、纵坐标、原点的定义和象限的划分。师 :看书,倒数第二段P130 P131第一段。(三分钟后)请一位同学加以叙述。生 :在平面内,两条互相垂直用公共原点的数轴组成平面直角坐标系。通常,有序实数对(a,b)叫做点P的坐标。师 :在了解有关直角坐标系的知识后,我们再返回刚才讨论的问题中,请大家思考后回答。生 :(2)“大成殿”在“中心广场”南两格,西两格。“碑林”在“中心广场”北一格,东三格。(3)如果以“中心广场”为原点作两条互相垂直的数轴、分别取向右、向上的方向为数轴的正方向,一个方格的边长看做一个单位长度,则 “碑林”的位置是(3,
9、1)。“大成殿”的位置是(2,2)。师 :很好,在(3)的条件下,你能把其他景点的位置表示出来吗?生 :能,钟楼的位置是(2,1),雁塔的位置是(0,3),影月湖的位置是(0,5),科技大学的位置是(5,7)。2、 例题讲解 (出示投影)例1 书P131。 例1 写出图中的多边形ABCDEF各各顶点的坐标。让学生回答。师 :上图中各顶点的坐标是否永远不变?生甲 :是。生乙 :不是。当坐标轴的位置发生变动时,各点的坐标相应地变化。师 :你能举个例子吗?生 :可以,若以线段BC所在的直线为x轴,纵轴(y轴位置不变,则六个顶点的坐标分别为:A(2,3),B(0,3),C(3,0),D(4,3),E(
10、3,6),F(0,6)师 :那大家再思考这位同学的结论是否是永恒的呢?生 :不是。还能再改变坐标轴的位置,得出不同的坐标。师 :请大家在课后继续进行坐标轴的变换,总结以一下共有多少种。 3、想一想在例1中,(1)点B与点C的纵坐标相同,线段BC的位置有什么特点?(2)线段测定位置有什么特点?(3)坐标轴上点的坐标有什么特点?师 :由B(0,3),C(3,3)可以看出它们的纵坐标相同,即B、C两点到X轴的距离相等,所以线段BC平行于横轴(x轴),垂直于纵轴(y轴)。请大家讨论第(2)题。生 :由C(3,3),E(3,3)可知,他们的横坐标相同,即C、E两点到y轴的距离相等,所以线段CE平行于纵轴
11、(y轴),垂直于横轴(x轴)师 :请大家找出坐标轴上的点。生 :B(0,3),A(2,0),D(4,0),F(0,3)师 :这些点的坐标中由什么特点呢?生 :坐标中都有一个数字是0。师 :从刚才的分析中可知,在坐标中只要有一个数字为0,则这个点一定在坐标轴上。当两个数字为0时,这个点是否在坐标轴上?生 :当两个数字都为0时,就是坐标原点(0,0),原点既在x轴上,又在y轴上。师 :那如何确定在哪个坐标轴上呢?生 :A(2,0),D(4,0)在x轴上,可以看出这两个点的纵坐标为0,横坐标不为0;B(0,3),F(0,3)在y轴上,可知它们的横坐标为0,纵坐标不为0。师 :经过大家的共同探讨,我们
12、可以总结出:坐标轴上的点的坐标中至少又一个是0;横轴上的点的纵坐标为0,纵轴上的点的横坐标为0。师 :刚才已知x轴、y轴把坐标平面分成四个象限,但是坐标轴上的点不属于任何一个象限。各个象限内的点的坐标特征是怎样的?生 :第一象限(,), 第二象限(,),第三象限(,), 第四象限(,)。4、做一做(出示投影) 书P131师 :请大家先独立思考,然后再进行交流。生 :A(3,4),B(6,2),C(6,2),D(9,4) A与D两点的纵坐标,B与C两点的纵坐标相同,因为AD、BC分别平行于横轴,A与B,C与D的横坐标不同,因为AB与CD是与x轴斜交,他们向横轴作垂线,垂足不同。三、随堂练习补充:
13、1、在下图中,确定A、B、C、D、E、F、G的坐标。 (第1题) (第2题)2、如右图,求出A、B、C、D、E、F的坐标。四、本课小结1、 认识并能画出平面直角坐标系。2、 在给定的直角坐标系中,由点的位置写出它的坐标。3、 能适当建立直角坐标系,写出直角坐标系中有关点的坐标。4、 横(纵)坐标相同的点的直线平行于y轴,垂直于x轴;连接纵坐标相同的点的直线平行于x轴,垂直于y轴。5、 坐标轴上点的纵坐标为0;纵坐标轴上点的坐标为0。6、各个象限内的点的坐标特征是:第一象限(,), 第二象限(,),第三象限(,), 第四象限(,)。五、课后作业书P132 习题5.3第二课时知识目标:1、在给定的
14、直角坐标系下,会根据坐标描出点的位置。 2、通过找点、连线、观察,确定图形的大致形状的问题,能进一步掌握平面直角坐标系的基本内容。能力目标:1、经历画坐标系、描点、连线、看图以及由点找坐标等过程,发展学生的数形结合思想,培养学生的合作交流能力。2、通过由点确定坐标到根据坐标描点的转化过程,进一步培养学生的转化意识。情感目标:通过生动有趣的教学活动,发展学生的合情推理能力和丰富的情感、态度,提高学生学习数学的兴趣。教学重点:在已知的直角坐标系下找点、连线、观察,确定图形的大致形状。教学难点:在已知的直角坐标系下找点、连线、观察,确定图形的大致形状教具准备:方格纸若干张教学过程:一、 导入新课师
15、:在上节课中我们学习了平面直角坐标系的定义,以及横轴、纵轴、点的坐标的定义,练习了在平面直角坐标系中由点找坐标,还探讨了横坐标或纵坐标相同的点的连线与坐标轴的关系,坐标轴上点的坐标有什么特点。练习:指出下列各点所在象限或坐标轴:A(1,2.5),B(3,4),C(,5),D(3,6),E(2.3,0),F(0,), G(0,0) (抽生答)师 :由点找坐标是已知点在直角坐标系中的位置,根据这点在方格纸上对应的x轴、y轴上的数字写出它的坐标,反过来,已知坐标,让你在直角坐标系中找点,你能找到吗?这就是本节课的内容。二、 新知学习1、师 :请同学们拿出准备好的方格纸,自己建立平面直角坐标系,然后按
16、照我给出的坐标,在直角坐标系中描点,并依次用线段连接起来。(9,3),(9,0),(3,0),(3,3)(学生操作完毕后)师 :下面大家看和我画的一样吗?生 :一样。师 :这是一个什么图形?生 :长方形。2、(出示投影)还是在这个平面直角坐标系中,描出下列各组内的点用线段依次连接起来。(1)(6,5),(10,3),(9,3),(3,3),(2,3),(6,5);(2)(3.5,9),(2,7),(3,7),(4,7),(5,7),(3.5,9);(3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);(4)(2,5),(0,3),(3,3),(3,0),(4,0),(4
17、,3),(7,3),(5,5)。观察所得的图形,你觉得它象什么?师 :分成4人小组,大家合作在刚才建立的平面直角坐标系中(选出小组中最好的)添画。各人分工,每人画一小题。看哪个小组做得最快? (学生操作) 师 :(出示学生的作品)画出是这样的吗?这幅图画很美,你们觉得它像什么? 生 :这个图形像一栋“房子”旁边还有一棵“大树”。3、做一做 (出示投影)书 P134师 :在书上已建立的直角坐标系画,要求每位同学独立完成。(学生描点、画图)师 :(拿出一位做对的学生的作品投影) 你们观察所得的图形和它是否一样?若一样,你能判断出它像什么呢?生 :像猫脸。三、随堂练习(补充)1、在直角坐标系中描出下
18、列各点,并将各组内的点用线段顺次连接起来。(1)(0,3),(4,0),(0,3),(4,0),(0,3);(2)(0,0),(4,3),(8,0),(4,3),(0,0);(3)(2,0)观察所得的图形,你觉得它像什么?(像移动的菱形) 2、在直角坐标系中,设法找到若干个点使得连接各点所得的封闭图形是如下图所示的“十”字。 (选取的坐标系不同,得出的坐标也不同。)师 :现独立完成,然后小组讨论是否正确? 四、本课小结 本节课在复习上节课的基础上,通过找点、连线、观察,确定图形的大致形状,进一步掌握平面直角坐标系的基本内容。五、活动与探究师 :在例题和练习中,我们画出了不少美丽的图形,下面我们
19、自己设计一些图形,并把图形方赛直角坐标系下,写出点的坐标。大家一定要自己设计,然后我们展示给同学们,看谁设计的图形最漂亮?如右图:六、课后作业书P135 习题5.4第三课时教学目标:知识目标:1、进一步巩固画平面直角坐标系,在给定的直角坐标系中,会根据坐标轴描出点的位置,由点的位置写出它的坐标。2、能在方格纸上建立适当的直角坐标系,描述物体的位置。3、能结合具体情景灵活运用多种方式确定物体的位置。能力目标:根据已知条件有不同的解决问题的方式,灵活地选取既简便又易懂的方法求解,通过多角度的探索既可以拓宽学生的思维,又可以从中找到解决问题的捷径。情感目标:1、通过学习建立直角坐标系有多种方法,让学
20、生体验数学活动充满着探索与创造。2、通过确定旅游景点的位置,让学生认识数学与人类生活的密切联系,提高他们学习数学的兴趣。教学重点:根据实际问题建立适当的坐标系,并能写出各点的坐标。教学难点:根据已知条件,建立适当的坐标系。教学过程:一、 创设问题情境,引入新课 师 :在前两节课中,我们学习了在直角坐标系下由点找坐标,和根据坐标找点,并把点用线段连接起来组成不同的图形,还自己设计出了不少漂亮的图案。这些都是在已知的直角坐标系下进行的,如果给出一个图形,要你写出图中一些点的坐标,那么你必须建立直角坐标系,直角坐标系应如何建立?是惟一的情形还是多种情况,这就是本节课的内容。二、 探索新知4 6 1、
21、【例】如图,矩形ABCD的长与宽分别是6,4,建立适当的直角坐标系,并写出各个顶点的坐标。师 :在没有直角坐标系的情况下师不能写出各个顶点的坐标的,所以应先建立直角坐标系,那么应如何选取直角坐标系呢?请大家思考。生1 :如图所示,以点C为坐标原点,分别以CD、CB所在直线为x轴、y轴,建立直角坐标系。由CD的长为6,CB长为4,可得A、B、C、D的坐标分别为A(6,4),B(0,4),C(0,0),D(6,0)。生2 :如下图所示,以点D为坐标原点,分别以CD、AD所在直线为x轴、y轴,建立直角坐标系。师 :这两位同学选取坐标系的方式都是以矩形的某一个顶点为坐标原点,举行的相邻两边所在直线分别
22、作为x轴、y轴,建立直角坐标系的。这样建立直角坐标系的方式还有两种,即以A、B为原点,矩形两邻边分别为x轴、y轴建立直角坐标系。除此之外,还有其他方式吗?生3 :有,如右图所示,以矩形的中心(即对角线的交点)为坐标原点,平行于矩形相邻两边的直角为x轴,y轴,建立直角坐标系。则A、B、C、D的坐标分别为A(3,2),B(3,2),C(3,2),D(3,2)。生4 :把上图中的横坐标逐渐向上、下移动,纵坐标左、右移动,则可得到不同的坐标系,从而得到A、B、C、D四点的不同坐标。师 :从刚才我们讨论的情况看,大家能发现什么?生 :建立直角坐标系有多种方法。2、【例】对于边长为4的整三角形ABC,建立
23、适当的直角坐标系,写出各个顶点的坐标。 解:略(书P136)师 :正三角形的边长已经确定是4,则它一边上的高是不是会因所处位置的不同而发生变化?生 :不会,只是位置变化,而长度不会变。师 :除了上面的直角坐标系的选取外,是否还有其他的选取方法?生 :有,3、【议一议】在一次“寻宝”游戏中,寻宝人已经找到了坐标为(3,2)和(3,2)的两个标志点,并且知道葬保地点的坐标为(4,4),除此外不知道其他信息。如何确定直角坐标系找到“宝藏”?与同伴进行交流。三、 随堂练习 书P136页 随堂练习 (体现建立直角坐标系的多样性)(补充)某地为了发展城市群,在现有的四个中小城市A、B、C、D附近新建机场E
24、,试建立适当的直角坐标系,并写出各点的坐标。四、 本课小结 本节课的目的是在方格纸上建立适当的直角坐标系,描述物体的位置。五、 活动与探究 书P137页 试一试六、 课后作业 书P137页 习题5.55.3变化的鱼第一课时教学目标:【知识目标】:1、经历图形坐标变化与图形的平移,轴对称,伸长,压缩之间的关系的探索过程,发展学生的形象思维能力和数形结合意识。2、在同一直角坐标系中,感受图形上点的坐标变化与图形的变化(平移,轴对称,伸长,压缩)之间的关系。【能力目标】:1、经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能。 2、通过图形的平移,轴对称等,培养
25、学生的探索能力。【情感目标】1、丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维。 2、通过有趣的图形的研究,激发学生对数学学习的好奇心与求知欲,能积极参与数学学习活动。 3、通过“变化的鱼”,让学生体验数学活动充满着探索与创造。教学重点:经历图形坐标变化与图形的平移,轴对称,伸长,压缩之间关系的探索过程,发展学生的形象思维能力和数形结合意识。教学难点:由坐标的变化探索新旧图形之间的变化。教学方法:导学法教学准备: 图515挂图一幅教学过程设计:一、 创设问题情境,引入新课师 :在前几节课中我们学习了平面直角坐标系的有关知识,会画平面直角坐标系;能在方格纸上建立适当的直角坐标系,描
26、述物体的位置;在给定的直角坐标系下,会根据坐标描出点的位置,由点的位置写出它的坐标。我们知道点的位置不同写出的坐标就不同,反过来,不同的坐标确定不同的点。如果坐标中的横(纵)坐标不变,纵(横)坐标按一定的规律变化,或者横纵坐标都按一定的规律变化,那么图形是否会变化,变化的规律是怎样的,这将是本节课中我们要研究的问题。 练习:拿出方格纸,并在方格纸上建立直角坐标系,根据我读出的点的坐标在纸上找到相应的点,并依次用线段将这些点连接起来。坐标是(0,0),(5,4),(3,0),(5,1),(5,1),(3,0),(4,2),(0,0)。 师 :你们画出的图形和我这里的图形(挂图)是否相同?生 :相
27、同。 师 :观察所得的图形,你们决定它像什么? 生 :像“鱼”。 师 :鱼是营养价值极高的食物,大家肯定愿意吃鱼,但上面的这条鱼太小了,下面我们把坐标适当地作些变化,这条鱼就能变大或变胖,即变化的鱼。(板书课题)二、 新课学习1、【例1】将上图中的点(0,0),(5,4),(3,0),(5,1),(5,1),(3,0),(4,2),(0,0)做以下变化:(1)纵坐标保持不变,横坐标分别变成原来的2倍,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?(2)纵坐标保持不变,横坐标分别加3,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?师 :先根据题意把
28、变化前后的坐标作一对比。如下: (1)(0,0),(5,4),(3,0),(5,1),(5,1),(3,0),(4,2),(0,0)(0,0),(10,4),(6,0),(10,1),(10,1),(6,0),(8,2),(0,0)(2)(0,0),(5,4),(3,0),(5,1),(5,1),(3,0),(4,2),(0,0)(3,0),(8,4),(6,0),(8,1),(8,1),(6,0),(7,2),(3,0)根据变化后的坐标,把变化后的图形在自己准备的方格纸上画出来。你们画出的图形与下面的图形相同吗?生 :相同。师 :这个图形与原来的图形相比有什么变化呢?生 :比原来的鱼长了。师
29、 :将各点用线段依次连接起来,所得图案与原图案相比,整条鱼横向拉长为原来的的2倍。即鱼变长了。 (师选一生的第(2)题的图对比)师 :大家的图形和他画的是否相同?生 :相同。师 :这个图形和原来的图形相比是变长了还是变胖了?生 :没变。师 :新的图案与原图案相比,鱼的形状、大小不变,整条鱼向右平移了3个长度单位。小结:从上面的两种变化情况来看,当横坐标分别加3,纵坐标不变时,整个图案向右平移了3个单位;当横坐标分别变成原来的2倍,纵坐标不变时,整条鱼被横向拉长为原来的2倍。这两种情况都是横坐标变化,纵坐标不变,图形是被拉长或向右移动,当纵坐标发生变化,横坐标不变时,鱼会怎样变化呢?2、【例2】
30、将第一个图形中的点(0,0),(5,4),(3,0),(5,1),(5,1),(3,0),(4,2),(0,0)做如下变化:(1)横坐标保持不变,纵坐标分别乘1,所得的图案与原来的图案相比有什么变化?(2)横、纵坐标分别变成原来的2倍,所得的图案与原来的图案相比有什么变化?(指导学生先做第(1)题:描述坐标的变化,再画图)师 :图形应变成什么图形?生 :图形和原来图形相比,好像鱼沿x轴翻了个身。师 :是的,所得的图案与原图案关于横轴成轴对称。(指导学生做第(2)题,方法同上)师 :图形应变成什么样了?生 :所得的图案与原图案相比,形状不变、大小放大了一倍。师 :即鱼长大长胖了。 3、 分小组讨
31、论:当坐标如何变化时,鱼就长大了;什么情况下,鱼就向右移动了;什么情况下,鱼就翻身了;什么情况下,鱼既长长又长胖。生 :(1)当横坐标同时加上一个相同的数,纵坐标不变时,鱼向右移动。 (2)当横坐标变为原来的2倍,纵坐标不变时,鱼长长了,没胖。(3)当横坐标不变,纵坐标分别乘以1时,鱼翻身了,即后来的鱼和原来的鱼关于x轴对称。(4)当横、纵坐标分别变成原来的2倍时,鱼既长长又长胖了。师 :当坐标如何变化时,鱼就长胖了?当坐标如何变化时,鱼就关于原点对称了?当坐标如何变化时,鱼就向上移动了?当坐标如何变化时,鱼就关于y轴成轴对称?师 :以上我们对不同的情况进行了探索整理,也找到了规律,在以后的学
32、习中大家要多思考,找规律。这样理解得深,学的知识比较牢固。三、 随堂练习(1)将右图中的各个点的纵坐标不变,横坐标都乘1,与原图案相比,所得的图案有什么变化?(2)将右图中的各个点的横坐标不变,纵坐标都乘1,与原图案相比,所得的图案有什么变化?(3)将上图中各个点的横坐标都乘2,纵坐标都乘2,与原图形相比,所得的图案有什么变化?四、 本课小结本节课主要研究横坐标或纵坐标发生变化时,新图案与旧图案相比有什么变化。五、 课后作业书P141 习题5.6第二课时教学目标:【知识目标】:1、进一步巩固图形坐标变化与图形定的平移,轴对称,伸长,压缩之间的探索过程,发展学生的形象思维能力和数形结合意识。2、
33、根据轴对称图形的特点,已知轴一边的图形或坐标确定另一边的图形或坐标。【能力目标】:1、通过对称轴左边的图形,观察得出右边的图形,训练学生的识图能力。2、具有初步的创新精神和实践能力。【情感目标】:通过研究有趣的图形,学生能进行探索和创造,把学到的知识灵活地运用现实生活中。教学重点: 作某一图形关于对称轴的对称图形,并能写出所得图形相应各点的坐标。教学难点:作某一图形关于对称轴的对称图形。教学方法:探究式学习教学过程设计:一、 创设问题情境,导入新课 师:在日常生活中,你们见到过哪些轴对称图形?中心对称图形? 生: 师:轴对称图形和中心对称图形随处可见。古时我国很多的建筑就有对称的结构,既美观又
34、大方。 上节课,我们已经知道,把一个图形的横坐标都乘以1,纵坐标不变时,所得的图形与原图形关于y轴对称;把一个图形的纵坐标都乘以1,横坐标不变时,所得的图形与原图形关于x轴对称。把一个图形的横坐标、纵坐标都乘以1时,所得的图形与原图形关于原点对称。 那么如果已知一个图形,你能否求出这个图形中的某些点关于x轴或y轴或原点对称的对称点的坐标呢?或者已知轴对称图形(或者中心对称图形)的一半,你能否画出另一半呢?二、 新课学习1、 例题讲解如图中,左右两幅图案关于y轴对称,右图中的左右眼睛的坐标分别是(2,3),(4,3)。嘴角左右端点的坐标分别是(2,1),(4,1)。(1)试确定左图案中的左右眼睛
35、和嘴角左右端点的坐标。(2)你是怎样得到的?与同伴交流。(此题较为简单。抽学生解答)师:现从对称的角度来考虑,可以发现什么?生:左右两幅图案关于y轴对称。从而发现两幅图案上各个对应点的纵坐标相同,横坐标互为相反数。师:上图中,我们可根据这个规律确定左图案的左右眼睛与左右嘴角端点的坐标。2、 议一议(1)如果将上图中的右图案沿x轴正方向平移1个单位长度,那么左右眼睛的坐标将发生什么变化?(2)如果作图中的右图案关于x轴的轴对称图形,那么左右眼睛的坐标将发生什么变化?(3)如果图中的右图案沿y轴正方向平移2个单位长度,那么左右眼睛的坐标将发生什么变化?(先独立思考,再小组交流,发表)生:(1)如果
36、将上图中的右图案沿x轴正方向平移1个单位长度,所以每一个点的横坐标都加1,纵坐标不变。因此左右眼睛的坐标分别为(3,3),(5,3)。(2)如果作图中的右图案关于x轴的轴对称图形,根据关于x轴对称的两图形对应点的特点可知,横坐标不变,纵坐标变为原纵坐标的相反数。所以左右眼睛的坐标现变为(2,3),(4,3)。(3)如果图中的右图案沿y轴正方向平移2个单位长度,那么图案中的每一点的纵坐标都增加2,横坐标不变。所以左右眼睛的坐标为(2,5),(4,5)。师:如果再上面的问题中右图案不是沿x轴正方向或y轴正方向移动,而是沿x轴负方向或y轴负方向移动,那么左、右眼睛的坐标又该如何变化?生:和上面相反,
37、沿x轴负方向移动几个单位长度,横坐标减去几,纵坐标不变;沿y轴负方向移动几个单位长度,纵坐标减去几,横坐标不变。3、 做一做如右图,正方形ABCD的顶点坐标分别为A(1,1),B(3,1),C(3,3),D(1,3)。(1)再同一直角坐标系中,将正方形向左平移2个单位,画出你相应的图形,并写出各点的坐标。(2)将正方形向下平移2个单位,画出相应的图形,并写出各点的坐标。(3)在(1)(2)中,你发现各点的横、纵坐标发生了哪些变化?解:(1)(2)略。(3)在(1)中,各点的横坐标减少了2,纵坐标不变;在(2)中,横坐标不变,纵坐标都减少了2。4、 如右下图,作字母H关于坐标原点的中心对称图形,并写出所得图形相应各点的坐标。三、 随堂练习书P143随堂练习四、 本课小结1、 会作出某一图形关于x轴、y轴、原点的对称图形,并能写出相应点的坐标。2、 把整个图形整体向上、向下、向左、向右移动几个单位长度后,图形有何变化,变化的规律是怎样的。五、 课后作业书P144 习题5.7