1、代数式的初步知识章节第一章课题代数式的初步知识课型复习课教法教学目标(知识、能力、教育)1在具体情境中进一步理解用字母表示数的意义,能分析简单问题的数量关系,并用代数式表示2理解代数式的含义,能解释一些简单代数式的实际背景或几何意义,体会数学与现实世界的联系3.会求代数式的值,能根据代数式的值推断代数式反映的规律4.会借助计算器探索数量关系,解决某些问题教学重点能分析简单问题的数量关系,并用代数式表示会求代数式的值。教学难点借助计算器探索数量关系,解决某些问题教学媒体学案代数式有理式无理式教学过程一:【课前预习】(一):【知识梳理】 1. 代数式的分类: 2. 代数式的有关概念 (1)代数式:
2、 用 (加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子叫代数式。单独的一个数或者一个字母也是代数式 (2)有理式: 和 统称有理式。 (3)无理式: 3.代数式的值:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值。求代数式的值可以直接代入、计算。如果给出的代数式可以化简,要先化简再求值。(二):【课前练习】 2. 当x=-2时,代数式-+2x-1的值等于( ) A.9 B.6 C.1 D.-1 3. 当代数式a+b的值为3时,代数式2a+2b+1的值是( ) A.5 B.6 C.7 D.8 4. 一种商品进价为每件a元,按进价增加25出售, 后因库存积压降价,按售价的九
3、折出售,每件还盈利( ) A.0.125a元 B.0.15a元 C.0.25a元 D.1.25a元 5.如图所示,四个图形中,图是长方形,图、 是正方形,把图、三个图形拼在一起(不重合),其面积为S,则S_;图的面积P为_,则P_s。二:【经典考题剖析】 1. 判别下列各式哪些是代数式,哪些不是代数式。(1)a2-ab+b2;(2)S=(a+b)h;(3)2a+3b0;(4)y;(5)0;(6)c=2R。2. 抗“非典”期间,个别商贩将原来每桶价格a元的过氧乙酸消毒液提价20后出售,市政府及时采取措施,使每桶的价格在涨价一下降15,那么现在每桶的价格是_元。aab3.一根绳子弯曲成如图所示的形
4、状,当用剪刀像图那样沿虚线把绳子剪断时,绳子被剪成5段;当用剪刀像图那样沿虚线b(ba)把绳子再剪一次时,绳子就被剪成9段,若用剪刀在虚线ab之间把绳子再剪(n-2)次(剪刀的方向与a平行)这样一共剪n次时绳子的段数是( )A.4n+1 B.4n+2 C.4n+3 D.4n+5 4. 有这样一道题,“当a= 0.35,b=-0.28时,求代数式 7a26a3b+3a36a3b3a2b10a3+3 a2b2的值”小明同学说题目中给出的条件a=0.35,b=-0.28是多余的,你觉得他的说法对吗?试说明理由 5. 按下列程序计算,把答案填在表格内,然后看看有什么规律,想想为什么会有这个规律? (1
5、)填写表内空格:输入x32-2.输出答案11. (2)发现的规律是:_。 (3)用简要的过程证明你发现的规律。三:【课后训练】 1. 下列各式不是代数式的是( ) A0 B4x23x+1 Cab= b+a D、 2. 两个数的和是25,其中一个数用字母x表示,那么x与另一个数之积用代数式表示为( ) Ax(x25) Bx(x25) C25x Dx(25x) 3. 若abx与ayb2是同类项,下列结论正确的是( ) AX2,y=1;BX=0,y=0;CX2,y=0;DX=1,y=1第1步第2步第3步 4. 小卫搭积木块,开始时用2块积木搭拼(第1步),然后用更多的积木块完全包围原来的积木块(第2
6、步),如图反映的是前3步的图案,当第0步结束后,组成图案的积木块数为 ( ) A306 B361 C380 D420 5. 科学发现:植物的花瓣、萼片、果实的数目以及其他方面的特征,都非常吻合于一个奇特的数列著名的裴波那契数列:1,1,2,3,5,8,13,21,34,55,仔细观察以上数列,则它的第11个数应该是 . 6. ; 7. 一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分如图所示,则这串珠子被盒子遮住的部分有_颗8. 用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案: 第4个图案中有白色地面砖 块; 第n个图案中有白色地面砖 块9. 下面是一个有规律排列的数表: 上面数表中第9行,第7列的数是_10. 观察下面的点阵图和相应的等式,探究其中的规律:1=12;1+3=22;1+2+5=32; ; ;在和后面的横线上分别写出相应的等式;通过猜想写出与第n个点阵相对应的等式.四:【课后小结】布置作业