1、第四章 相似图形课时安排14课时第一课时课 题4.1.1 线段的比(一)教学目标(一)教学知识点1.知道线段比的概念.2.会计算两条线段的比.(二)能力训练要求会求两条线段的比.(三)情感与价值观要求通过有关比例尺的计算,让学生懂得数学在现实生活中的作用,从而增强学生学习数学的信心.教学重点会求两条线段的比.教学难点会求两条线段的比,注意线段长度的单位要统一.教学方法自主探索法教具准备投影片一张:例题(记作4.1.1 A)教学过程.创设问题情境,引入新课师同学们,大家见到过形状相同的图形吗?请举出例子来说明.生课本P38中两张图片;同一底片洗印出来的大小不同的照片;两个大小不同的正方形,等等.
2、师对,大家举出的这些例子都是形状相同、大小不同的图形,即为相似图形.本章我们就要研究相似图形以及与之有关的问题.从两个大小不同的正方形来看,它们之所以大小不同,是因为它们的边长的长度不同,因此相似图形与对应线段的长度有关,所以我们首先从线段的比开始学习.新课讲解1.两条线段的比的概念师大家先回忆什么叫两个数的比?怎样度量线段的长度?怎样比较两线段的大小?生两个数相除又叫两个数的比,如ab记作;度量线段时要选用同一个长度单位,比较线段的大小就是比较两条线段长度的大小.师由比较线段的大小就是比较两条线段长度的大小,大家能猜想线段的比吗?生两条线段的比就是两条线段长度的比.师对.比如:线段a的长度为
3、3厘米,线段b的长度为6米,所以两线段a,b的比为36=12,对吗?生对.师大家同意他的观点吗?生不同意,因为a、b的长度单位不一致,所以不对.师那么,应怎样定义两条线段的比,以及求比时应注意什么问题呢?生如果选用同一个长度单位量得两条线段AB、CD的长度分别是m、n,那么就说这两条线段的比(ratio)ABCD=mn,或写成=,其中,线段AB、CD分别叫做这两个线段比的前项和后项.如果把表示成比值k,则=k或AB=kCD.注意:在量线段时要选用同一个长度单位.2.做一做量出数学书的长和宽(精确到0.1 cm),并求出长和宽的比.生长为21.1 cm,宽为14.8 cm,长和宽的比为21.11
4、4.8=211148师如把单位改成mm和m,比值还相同吗?生改为mm作单位,则长为211 mm,宽为148 mm,比值为211148改用m作单位,则长为0.211 m,宽为0.148 m,长与宽的比为0.2110.148=211148师从刚才的单位变换到计算比值,大家能得到什么吗?生只要是选用同一单位测量线段,不管采用什么单位,它们的比值不变.3.求两条线段的比时要注意的问题师大家能说出几点?试一试.生(1)两条线段的长度必须用同一长度单位表示,如果单位长度不同,应先化成同一单位,再求它们的比;(2)两条线段的比,没有长度单位,它与所采用的长度单位无关;(3)两条线段的长度都是正数,所以两条线
5、段的比值总是正数.4.例题投影片(4.1.1 A)在某市城区地图(比例尺19000)上,新安大街的图上长度与光华大街的图上长度分别是16 cm、10 cm.(1)新安大街与光华大街的实际长度各是多少米?(2)新安大街与光华大街的图上长度之比是多少?它们的实际长度之比呢?解:(1)根据题意,得因此,新安大街的实际长度是169000=144000(cm),144000 cm=1440 m;光华大街的实际长度是109000=90000(cm)90000 cm=900 m.(2)新安大街与光华大街的图上长度之比是1610=85新安大街的实际长度与光华大街的实际长度之比是14400090000=85由例
6、2的结果可以发现:.随堂练习1.在比例尺为18000的某学校地图上,矩形运动场的图上尺寸是1 cm2 cm,矩形运动场的实际尺寸是多少?解:根据题意,得矩形运动场的图上长度矩形运动场的实际长度=18000因此,矩形运动场的长是28000=16000(cm)=160(m)矩形运动场的宽是18000=8000(cm)=80(m)所以,矩形运动场的实际尺寸是长为160 m,宽为80 m.课时小节1.相似图形两条线段的比.2.两条线段的比定义:两条线段的长度之比表示法:线段a、b的长度分别为m、n,则ab=mn.求法:先用同一长度单位量出线段的长度,再求出它们的比.注意点:(1)两线段的比值总是正数.
7、(2)讨论线段的比时,不指明长度单位.(3)对两条线段的长度一定要用同一长度单位表示.比例尺:图上长度与实际长度的比.课后作业习题4.11.解:一条线段的长度是另一条线段长度的5倍,这两条线段的比是51.2.解:早上8点旗杆的高与其影长的比为3040=34中午12点旗杆的高与其影长的比为3010=313.解:等腰直角三角形ABC与等腰三角形DEF腰的比为1012=56底边的比为108=54.活动与探究为了参加北京市申办2008年奥运会的活动,如果有两边长分别为1,a(其中a1)的一块矩形绸布,要将它剪裁出三面矩形彩旗(面料没有剩余),使每条彩旗的长和宽之比与原绸布的长和宽之比相同,画出两种不同裁剪方法的示意图,并写出相应的a的值.解:方案(1):长和宽之比与原绸布的长和宽之比相同,(*)解得:a=图41方案(2):由(*)得x=,a=方案(3):由(*)得 y=且 z=由=a 得a=图42方案(4):由(*)得 b=n=1 m=a21m+n=1 1+a21=1a=(负值舍去)