1、生活中的旋转教学目标(一)教学知识点1.旋转的定义.2.旋转的基本性质.(二)能力训练要求1.通过具体实例认识旋转,理解旋转的基本涵义.2.探索旋转的基本性质,理解旋转前后两个图形对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角彼此相等的性质.(三)情感与价值观要求1.经历对生活中与旋转现象有关的图形进行观察、分析、欣赏以及动手操作、画图等过程,掌握有关画图的操作技能,发展初步的审美能力,增强对图形欣赏的意识.2.通过学习使学生能用数学的眼光看待生活中的有关问题,进一步发展学生的数学观.教学重点旋转的基本性质.教学难点探索旋转的基本性质.教学方法探索、发现法.教具准备电脑演示或图片.
2、投影片四张:第一张:想一想(记作投影片3.3 A);第二张:议一议(记作投影片3.3 B);第三张:性质(记作投影片3.3 C);第四张:例1(记作投影片3.3 D).教学过程.巧设情景问题,引入课题师日常生活中,我们经常见到以下情景(出示图示:钟表、汽车方向盘、辘轳或电脑演示:钟表指针的转动、汽车方向盘的转动、辘轳打水的情景).大家想一想:(出示投影片3.3 A)(1)上面情景中的转动现象,有什么共同特征?(2)钟表的指针、钟摆在转动过程中,其形状、大小、位置是否发生改变?汽车方向盘的转动呢?生甲在这些转动的现象中,它们都是绕着一个点转动的.生乙每个物体的转动都是向同一个方向转动.生丙钟表的
3、指针、钟摆在转动过程中,它的形状、大小没有变化,只是它的位置有所改变.汽车的方向盘在转动过程中,同样它的形状、大小没有改变,方向盘上的每点的位置有所变化.师同学们观察得很仔细,我们把这样的转动叫旋转(circumrotate),这节课我们就来探讨生活中的旋转.讲授新课师在数学中,如何定义旋转呢?在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转(circumrotate).这个定点称为旋转中心,转动的角称为旋转角.注意:“将一个图形绕一个定点沿某个方向转动一个角度”意味着图形上的每个点同时都按相同的方式转动相同的角度.在物体绕着一个定点转动时,它的形状和大小不变.因
4、此,旋转具有不改变图形的大小和形状的特征.好,了解了旋转的基本概念后,我们来看一钟表的指针的旋转情况(出示投影片3.3 B),大家分组讨论.议一议:如下图所示,如果把钟表的指针看做四边形AOBC,它绕O点旋转得到四边形DOEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、B分别移动到什么位置?(3)AO与DO的长有什么关系?BO与EO呢?(4)AOD与BOE有什么大小关系?生甲(1)旋转中心是O点,旋转角是AOD.生乙旋转角还可以是BOE.生丙(2)四边形AOBC绕O点旋转到四边形DOEF的位置.这时点A旋转到点D的位置,点B旋转到点E的位置.生丁(3)可以把O
5、A看作钟表的指针,它OA的位置旋转到OD的位置,指针的长短、形状没有变化,所以OA与OD是相等的.同样,线段OB与OE是相等的.生戊(4)因为四边形AOBC绕O点旋转到四边形DOEF的位置,在旋转的过程中,图形上的每个点同时都按相同的方向旋转相同的角度,所以AOD与BOE是相等的.生己(4)也可以这样理解:因为四边形AOBC绕O点旋转到四边形DOEF的位置,所以AOB与DOE是相等的,又因为BOD是公共角,所以,AOD与BOE是相等的.师同学们讨论得非常精彩,也合乎逻辑,看上图,四边形DOEF是由四边形AOBC绕O点旋转得到的,经过旋转,点A移动到点D的位置,点B移动到点E的位置,点C移动到点
6、F的位置,则点A与点D、点B与点E、点C与点F就是对应点.从刚才大家得出的结论中,能否总结出旋转的性质呢?生甲因为O是旋转中心,点A与点D是对应点,点B与点E是对应点,且OA=OD,OB=OE,所以可以知道:对应点与旋转中心所连的线段的长度是相等的.生乙因为点A与点D、点B与点E是对应点,且AOD=BOE,所以由此可以知道:对应点与旋转中心的连线所成的角是互相相等的.师同学们总结得很好,由此我们得到了旋转的基本性质(出示投影片3.3 C)经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度.任意一对对应点与旋转中心的连线所成的角都是旋转角,旋转角彼此相等.对应点到旋转中心的距离相等.
7、师好,下面我们通过一例题来熟悉旋转的有关性质的应用(出示投影片3.3 D)例1钟表的分针匀速旋转一周需要60分.(1)指出它的旋转中心;(2)经过20分,分针旋转了多少度?师大家可以画图表示;有的同学带表的话可以观察观察.师生共析经演示(钟表实物或教具)可以知道,分针是绕着表面盘的中心位置,即钟表的轴心旋转的,它旋转一周时的度数是360,一周需要60分,因此每分钟分针所转过的度数是6,这样20分时,分针逆转的角度即可求出.解:(1)它的旋转中心是钟表的轴心.(2)分针匀速旋转一周需要60分,因此旋转20分,分针旋转的角度为20= 120.师同学们通过熟悉的钟表,了解了旋转性质的应用.接下来我们
8、拿出剪刀、白纸和图钉来做一做(出示投影片3.3 E)(1)剪出两个边长相等的正方形纸片.(2)按下图所示用图钉钉制好.(3)这个图案可以看做是哪个“基本图案”通过旋转得到的?(学生动手制作,教师巡视指导)生甲这个图案可以看做是正方形ABCD绕点O旋转45前后的图形共同组成的,也可以看做是正方形EFGH绕点O旋转45前后的图形共同组成的.生乙我剪了一个三角形ABC与三角形ABC全等,找出ABC的边 AC的中点,即图案中的O点,把ABC绕O点分别旋转45、90、135、180、225,则前后所有图形共同组成了一个新图案,而这个新图案与原图案(即如图所示的图案)能够完全重合,因此,如图所示的图案可以
9、看做是ABC绕点O分别旋转45、90、135、180、225前后所有图形共同组成的.生丙老师,我也剪了一个三角形AOB与三角形AOB全等,然后把 AOB绕O点分别旋转45、90、135、180、225、270、315,前后所有的图形共同组成了一个新图案,而这个新图案同样与原图案完全重合.因此,如图所示的图案可能看做是AOB绕点O分别旋转45、90、135、180、225、270、 315前后所有图形共同组成的.生丁老师,我剪了一个与正方形AQOP完全重合的正方形AQOP,然后把正方形AQOP绕点O分别旋转45、90、135、180、225、270、 315,前后所有的图形共同组成了一个新图案,
10、而这个新图案与原图案完全重合,因此,如图所示的图案可以看做是正方形AQOP绕点O分别旋转45、90、135、180、 225、270、315前后所有图形共同组成的.师同学们做得真棒,通过动手操作、分析,找到了不同的“基本图案”,由这些不同的“基本图案”经过旋转得到了如上图所示的美丽的图案.下面我们做练习来进一步熟悉旋转的有关性质.课堂练习(一)课本P68随堂练习.1.下图可以看做是一个菱形通过几次旋转得到的?每次旋转了多少度?解:旋转5次得到,旋转的角度分别等于60、120、180、240、300.(二)看课本P66P67然后小结.课时小结这节课我们通过具体的实例认识了旋转,并由此探讨了旋转的
11、基本性质.旋转不改变图形的大小和形状,但图形上的每个点同时都按相同的方式转动相同的角度.旋转前后两个图形对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角彼此相等.课后作业(一)课本P68习题3.4 1、2、3.(二)(1)预习内容P69P70(2)预习提纲.如何进行做一个图形关于某个点的旋转图形.确定一个三角形旋转后的位置的条件有哪些?.活动与探究1.分析图中的旋转现象.过程:让学生画图、找规律,也可让他们通过剪切,找到旋转规律.结果:旋转现象为:整个图形可以看做是图形的八分之一(一组大小不等的三个“角”)绕中心位置,按照同一方向连续旋转45、90、135、180、225、270、3
12、15前后的图形共同组成的.整个图形也可以看做是图形的四分之一(两组相邻的“角”)绕中心位置连续旋转90、180、270前后的图形共同组成的.整个图形还可以看做是图形的二分之一(四组相邻的“角”)绕中心位置旋转180前后的图形共同组成的.2.图中是否存在这样的两个三角形,其中一个是另一个通过旋转得到的?过程:同样让学生在画图过程中体会图形中每个三角形之间的关系;或让学生仔细观察图形,分析图形,找出关系.结果:图中存在这样的三角形,其中一个是另一个通过旋转得到的.整个图形可以看做图形的四分之一(一组“楼梯”)绕中心连续旋转90、180、 270.前后的图形共同组成的.整个图形也可以看做图形的二分之一(两组“楼梯”)绕中心位置旋转180前后的图形共同组成的.板书设计3.3 生活中的旋转一、旋转的定义旋转中心旋转角二、旋转的性质例1三、做一做四、课堂练习五、课时小结六、课后作业