资源描述
12.2 三角形全等的判定(第1课时)
教学内容
本节课主要内容是探索三角形全等的条件(SSS)及利用全等三角形的判定进行证明.
教学目标
1.知识与技能
了解三角形的稳定性,会应用“边边边”判定两个三角形全等.
2.过程与方法
经历探索“边边边”判定全等三角形的过程,解决简单的问题.
3.情感、态度与价值观
培养有条理的思考和表达能力,形成良好的合作意识.
重点与难点
重点:掌握“边边边”判定两个三角形全等的方法.
难点:理解证明的基本过程,学会综合分析法.
教具准备
一块形状如图1所示的硬纸片,直尺,圆规.
图1 图2
教学方法
采用“操作──实验”的教学方法,让学生亲自动手,形成直观形象.
教学过程
一、设疑求解,操作感知
【教师活动】(出示教具)
问题提出:一块三角形的玻璃损坏后,只剩下如图2所示的残片,你对图中的残片作哪些测量,就可以割取符合规格的三角形玻璃,与同伴交流.
【学生活动】观察,思考,回答教师的问题.方法如下:可以将图1的玻璃碎片放在一块纸板上,然后用直尺和铅笔或水笔画出一块完整的三角形.如图2,剪下模板就可去割玻璃了.
【理论认知】
如果△ABC≌△A′B′C′,那么它们的对应边相等,对应角相等.反之,如果△ABC与△A′B′C′满足三条边对应相等,三个角对应相等,即AB=A′B′,BC=B′C′,CA=C′A′,∠A=∠A′,∠B=∠B′,∠C=∠C′.这六个条件,就能保证△ABC≌△A′B′C′,从刚才的实践我们可以发现:只要两个三角形三条边对应相等,就可以保证这两个三角形全等.
【作图验证】(用直尺和圆规)
先任意画出一个△ABC,再画一个△A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA.把画出的△A′B′C′剪下来,放在△ABC上,它们能完全重合吗?(即全等吗)
【学生活动】拿出直尺和圆规按上面的要求作图,并验证.(如教材图12.2-2所示)
画一个△A′B′C′,使A′B′=AB,A′C′=AC,B′C′=BC.
1.画线段取B′C′=BC;
2.分别以B′、C′为圆心,线段AB、AC长为半径画弧,两弧交于点A′;
3.连接线段A′B′、A′C′.
【教师活动】巡视、指导,引入课题:“上述的生活实例和尺规作图的结果反映了什么规律?”
【学生活动】在思考、实践的基础上可以归纳出下面判定两个三角形全等的定理.
(1)判定方法:三边对应相等的两个三角形全等(简写成“边边边”或“SSS”).
(2)判断两个三角形全等的推理过程,叫做证明三角形全等.
【评析】通过学生全过程的画图、观察、比较、交流等,逐步探索出最后的结论──边边边,在这个过程中,学生不仅得到了两个三角形全等的条件,同时增强了数学体验.
二、范例点击,应用所学
【例1】如教材图12.2─3所示,△ABC是一个钢架,AB=AC,AD是连接点A与BC的中点D的支架,求证△ABD≌△ACD.(教师板书)
【教师活动】分析例1,要证明△ABD≌△ACD,可看这两个三角形的三条边是否对应相等.
证明:∵D是BC的中点,
∴BD=CD.
在△ABD和△ACD中,
AB=AC,
AD=AD,
BD=CD,
∴△ABD≌△ACD(SSS).
【评析】符号“∵”表示“因为”,“∴”表示“所以”;从例1可以看出,证明是由题设(已知)出发,经过一步步的推理,最后推出结论(求证)正确的过程.书写中注意对应顶点要写在对应位置上,哪个三角形先写,哪个三角形的边就先写.
三、实践应用,合作学习
【问题思考】
已知AC=FE,BC=DE,点A、D、B、F在直线上,AD=FB(如图所示),要用“边边边”证明△ABC≌△FDE除了已知中的AC=FE,BC=DE以外,还应该有什么条件?怎样才能得到这个条件?
【教师活动】提出问题,巡视、引导学生,并请学生说说自己的想法.
【学生活动】先独立思考后,再发言:“还应该有AB=FD,只要AD=FB两边都加上DB即可得到AB=FD.”
【教学形式】先独立思考,再合作交流,师生互动.
四、随堂练习,巩固深化
1、教材P37练习1,2.
2、如图所示,AB=DF,AC=DE,BE=CF,BC与EF相等吗?你能找到一对全等三角形吗?说明你的理由.(BC=EF,△ABC≌△DFE)
五、课堂总结,发展潜能
1.全等三角形的性质是什么?
2.正确地判断出全等三角形的对应边、对应角,利用全等三角形处理问题的基础,你是怎样掌握判断对应边、对应角的方法?
3.“边边边”判定法告诉我们什么呢?(答:只要一个三角形三边长度确定了,则这个三角形的形状大小就完全确定了,这就是三角形的稳定性)
12.2 三角形全等的判定(第2课时)
教学目标
1.知识与技能 领会“边角边”判定两个三角形全等的方法.
2.过程与方法 经历探究三角形全等的判定方法的过程,学会解决简单的推理问题.
3.情感、态度与价值观 培养合情推理能力,感悟三角形全等的应用价值.
重点与难点
重点:会用“边角边”证明两个三角形全等.
难点:应用结合法的格式表达问题.
教具准备 投影仪、直尺、圆规.
教学方法 采用“操作──实验”的教学方法,让学生有一个直观的感受.
教学过程
一、回顾交流,操作分析
【动手画图】
【投影】作一个角等于已知角.
【学生活动】动手用直尺、圆规画图.
已知:∠AOB.
求作:∠A1O1B1,使∠A1O1B1=∠AOB.
【作法】(1)作射线O1A1;(2)以点O为圆心,以适当长为半径画弧,交OA于点C,交OB于点D;(3)以点O1为圆心,以OC长为半径画弧,交O1A1于点C1;(4)以点C1为圆心,以CD长为半径画弧,交前面的弧于点D1;(5)过点D1作射线O1B1,∠A1O1B1就是所求的角.
【导入课题】
教师叙述:请同学们连接CD、C1D1,回忆作图过程,分析△COD和△C1O1D1中相等的条件.
【学生活动】与同伴交流,发现下面的相等量:
OD=O1D1,OC=O1C1,∠COD=∠C1O1D1,△COD≌△C1O1D1.
归纳出规律:
两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”).
【评析】通过让学生回忆基本作图,在作图过程中体会相等的条件,在直观的操作过程中发现问题,获得新知,使学生的知识承上启下,开拓思维,发展探究新知的能力.
【媒体使用】投影显示作法.
【教学形式】操作感知,互动交流,形成共识.
二、范例点击,应用新知
【例2】如教材图12.2-6所示有一池塘,要测池塘两侧A、B的距离,可先在平地上取一个可以直接到达A和B的点,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,那么量出DE的长就是A、B的距离,为什么?
【教师活动】操作投影仪,显示例2,分析:如果能够证明△ABC≌△DEC,就可以得出AB=DE.在△ABC和△DEC中,CA=CD,CB=CE,如果能得出∠1=∠2,△ABC和△DEC就全等了.
证明:在△ABC和△DEC中,
AC=DC,
∠1=∠2,
BC=CE,
∴△ABC≌△DEC(SAS),
∴AB=DE.
想一想:∠1=∠2的依据是什么?(对顶角相等)AB=DE的依据是什么?(全等三角形对应边相等)
【学生活动】参与教师的讲例之中,领悟“边角边”证明三角形全等的方法,学会分析推理和规范书写.
【媒体使用】投影显示例2.
【教学形式】教师讲例,学生接受式学习但要积极参与.
【评析】证明两个三角形的线段相等或角相等的问题,常常通过证明这两个三角形全等来解决.
三、辨析理解,正确掌握
【问题探究】(投影显示)
我们知道,两边和它们的夹角对应相等的两个三角形全等,由“两边及其中一边的对角对应相等”的条件能判定两个三角形全等吗?为什么?
【教师活动】拿出教具进行示范,让学生直观地感受到问题的本质.
操作教具:把一长一短两根细木棍的一端用螺钉铰合在一起,使长木棍的另一端与射线BC的端点B重合,适当调整好长木棍与射线BC所成的角后,固定住长木棍,把短木棍摆起来(教材图12.2-7),出现一个现象:△ABC与△ABD满足两边及其中一边的对角相等,但△ABC与△ABD不全等.这说明,有两边和其中一边的对角对应相等的两个三角形不一定全等.
【学生活动】观察教师操作教具、发现问题、辨析理解,动手用直尺和圆规实验一次,做法如下:(如图所示)
(1) 画∠ABT;(2)以A为圆心,以适当长为半径,画弧,交BT于C、C′;
(3)连接AC,AC′,△ABC与△ABC′不全等.
【形成共识】“边边角”不能作为判定两个三角形全等的条件.
【教学形式】观察、操作、感知,互动交流.
四、课堂总结,发展潜能
1.请你叙述“边角边”定理.
2.证明两个三角形全等的思路是:首先分析条件,观察已经具备了什么条件,然后以已具备的条件为基础根据全等三角形的判定方法,来确定还需要证明哪些边或角对应相等,再设法证明这些边和角相等.
12.2 三角形全等的判定(第3课时)
教学内容
本节课的主要内容是探索三角形全等的判定(ASA,AAS)及利用全等三角形的判定进行证明.
教学目标
⑴ 理解并掌握全等三角形的判定方法3(ASA)及其推论(AAS);
⑵ 会运用ASA(AAS)判定两个三角形全等;
⑶ 进一步学会运用全等三角形证明线段、角相等的思想方法.
重点与难点
1. 重点:应用“角边角”“角角边”判定三角形全等.
2.难点:学会综合法解决几何推理问题.
教具准备
投影仪、幻灯片、直尺、圆规.
教学方法
采用“问题教学法”在情境问题中,激发学生的求知欲.
教学过程
一、回顾交流,巩固学习
【知识回顾】(投影显示)
情境思考:
1.小菁做了一个如图1所示的风筝,其中∠EDH=∠FDH,ED=FD,将上述条件注在图中,不用测量就能知道EH=FH吗?与同伴交流.
图1 图2
[答案:能,因为根据“SAS”,可以得到△EDH≌△FDH,从而得出EH=FH]
2.如图2,AB=AD,AC=AE,能添上一个条件证明△ABC≌△ADE吗?[答案:BC=DE(SSS)或∠BAC=∠DAE(SAS)].
3.如果两边及其中一边的对角对应相等,两个三角形一定会全等吗?试举例说明.
【教师活动】操作投影仪,提出问题,组织学生思考和提问.
【学生活动】通过情境思考,复习前面学过的知识,学会正确选择三角形全等的判定方法,小组交流,踊跃发言.
【教学形式】用问题牵引,辨析、巩固已学知识,在师生互动交流过程中,激发求知欲.
二、实践操作,导入课题
【动手动脑】(投影显示)
问题探究:先任意画一个△ABC,再画出一个△A′B′C′,使A′B′=AB,∠A′=
∠A,∠B′=∠B(即使两角和它们的夹边对应相等),把画出的△A′B′C′剪下,放到△ABC上,它们全等吗?
【学生活动】动手操作,感知问题的规律,画图如下:
画一个△A′B′C′,使A′B′=AB,∠A′=∠A,∠B′=∠B.
1. 画A′B′=AB;
2. 在A′B′的同旁画∠DA′B′=
∠A,∠EB′A′=∠B,A′D,B′E相交于点C′.
探究规律:两角和它们的夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”).
【知识铺垫】教材图12.2─8中,∠A′=∠A,∠B′=∠B,那么∠C=∠A′C′B′吗?为什么?
【学生回答】根据三角形内角和定理,∠A′C′B′=180°-∠A′-∠B′,∠C=180°-∠A-∠B.又∵∠A=∠A′,∠B=∠B′,∴∠C=∠A′C′B′.
【教师提问】在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF(教材图12.2—10),△ABC与
△DEF全等吗?
【学生活动】运用三角形内角和定理以及“ASA”证出△ABC≌△DEF,并且归纳如下:
两个角和其中一个角的对边对应相等的两个三角形全等(简写成AAS).
三、范例点击,应用所学
【例3】如教材图12.2─9,D在AB上,E在AC上,AB=AC,∠B=∠C,求证:AD=AE.
【教师活动】引导学生,分析例3.关键是寻找到和已知条件有关的△ACD和△ABE,再证它们全等,从而得出AD=AE.
证明:在△ACD与△ABE中,
∠A=∠A, AC=AB, ∠C=∠B,
∴△ACD≌△ABE(ASA),
∴AD=AE.
【学生活动】参与教师分析,领会推理方法.
【媒体使用】投影显示例3.
【教学形式】师生互动.
【教师提问】三角对应相等的两个三角形全等吗?
【学生活动】与同伴交流,得到有三角对应相等的两个三角形不一定全等,拿出三角板进行说明,如图,下面这块三角形的内外边形成的△ABC和△A′B′C′中,∠A=∠A′,∠B=∠B′,∠C=∠C′,但它们不全等.(形状相同,大小不等).
四、课堂总结,发展潜能
1.证明两个三角形全等有几种方法?如何正确选择和应用这些方法?
2.全等三角形的性质可以用来证明哪些问题?举例说明.
3.你在本节课的探究过程中,有什么感想?
12.2 三角形全等的判定(第4课时)
教学内容
本节课的主要内容是探究直角三角形的判定方法.
教学目标
1.知识与技能
在操作、比较中理解直角三角形全等,并能用于解决实际问题.
2.过程与方法
经历探索直角三角形全等的判定过程,掌握数学方法,提高合情推理的能力.
3.情感、态度与价值观
培养几何推理意识,激发学生求知欲,感悟几何思维的内涵.
重点与难点
1.重点:理解利用“斜边、直角边”来判定直角三角形全等的方法.
2.难点:培养有条理的思考能力,正确使用“综合法”表达.
教具准备
投影仪、幻灯片、直尺、圆规.
教学方法
采用“问题探究”的教学方法,让学生在互动交流中领会知识.
教学过程
一、回顾交流,迁移拓展
【问题探究】
如图是两个直角三角形,除了直角相等的条件,还要满足几个条件,这两个直角三角形才能全等?
【教师活动】操作投影仪,提出“问题探究”,组织学生讨论.
【学生活动】小组讨论,发表意见:“由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.”
【媒体使用】投影显示“问题探究”.
【教学形式】分四人小组,合作、讨论.
【情境导入】如图所示.
舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.
(1)你能帮他想个办法吗?
(2)如果他只带了一个卷尺,能完成这个任务吗?
工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别对应相等,于是他就肯定“两个直角三角形是全等的”,你相信他的结论吗?
【思路点拨】(1)学生可以回答去量斜边和一个锐角,或直角边和一个锐角,但对问题(2)学生难以回答.此时,教师可以引导学生对工作人员提出的办法及结论进行思考,并验证它们的方法,从而展开对直角三角形特殊条件的探索.
【教师活动】操作投影仪,提出问题,引导学生思考、验证.
【学生活动】思考问题,探究原理.
做一做如教材图12.2─11:任意画出一个Rt△ABC,使∠C=90°,再画一个Rt△A′B′C′,使B′C′=BC,A′B′=AB,把画好的Rt△A′B′C′剪下,放到Rt△ABC上,它们全等吗?
【学生活动】画图分析,寻找规律.如下:
规律:斜边和一条直角边对应相等的两个直角三角形全等(简写成“斜边、直角边”或“HL”).
画一个Rt△A′B′C′,使B′C′=BC,A′B′=AB.
1. 画∠MC′N=90°。
2. 在射线C′M上取B′C′=BC。
3. 以B′为圆心,AB长为半径画弧,交射线C′N于点A′。
4. 连接A′B′。
二、范例点击,应用所学
【例4】如教材图12.2─12,AC⊥BC,BD⊥AD,AC=BD,求证BC=AD.
【思路点拨】欲证BC=AD,首先应寻找和这两条线段有关的三角形,这里有△ABD和△BAC,设O为DB、AC的交点,△ADO和△BCO,经过条件的分析,△ABD和△BAC具备全等的条件.
【教师活动】引导学生共同参与分析例4.
证明:∵AC⊥BC,BD⊥AD,
∴∠C与∠D都是直角.
在Rt△ABC和Rt△BAD中,
AB=BA,AC=BD,
∴Rt△ABC≌Rt△BAD(HL).
∴BC=AD.
【学生活动】参与教师分析,提出自己的见解.
【评析】在证明两个直角三角形全等时,要防止学生使用“SSA”来证明.
【媒体使用】投影显示例4.
三、课堂总结,发展潜能
本节课通过动手操作,在合作交流、比较中共同发现问题,培养直观发现问题的能力,在反思中发现新知,体会解决问题的方法.通过今天的学习和对前面三角形全等条件的探求,可知判定直角三角形全等有五种方法.(教师让学生讨论归纳)
展开阅读全文