1、第21课时:近似数和有效数字教学内容:教科书第7174页,2.14近似数和有效数字。教学目的和要求:1使学生初步理解近似数和有效数字的概念,并由给出的近似数,说出它精确到哪一位,它有几个有效数字。2给一个数,能熟练地按要求四舍五入取近似数。教学重点和难点:重点:近似数、精确度,有效数字等概念和给一个数,能按照精确到哪一位或保留几个有效数字的要求,四舍五入取近似数。 难点:由给出的近似数求其精确度及有效数字的个数、保留有效数字取近似值。教学工具和方法:工具:应用投影仪,投影片。 方法:分层次教学,讲授、练习相结合。教学过程:一、复习引入:1问题:统计班上喜欢吃肯德鸡的同学?量一量课本的宽度。了解
2、准确数和近似数的概念,2从学生原有认知结构提出问题:在小学里我们计算圆的面积S=R2,一般取多少?(3.14)这是一个精确的数吗?小数位数太多,不便于计算,常常保留两位小数,由“四舍五入”取3.14,这就是“近似数”,小学里在小数计算中经常把最后答案取近似数。3完成练习:将3.062保留一位小数得_;将7.448保留整数得_;将15.267保留两位小数得_。二、讲授新课:1概念:精确度:在实际问题中,我们经常要用近似数.使用近似数就有一个近似程度的问题,也是就精确度的问题。我们都知道,。我们对这个数取近似数:如果结果只取整数,那么按四舍五入的法则应为2,就叫做精确到个位;如果结果取1位小数,则
3、应为1.7,就叫做精确到十分位(或叫精确到0.1);如果结果取2位小数,则应为1.67,就叫做精确到百分位(或叫精确到0.01);。概括:一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位。有效数字:这时,从左边第一个不是0的数起,到精确到的数位止,所有的数字都叫做这个数的有效数字(significant digits)。象上面我们取1.667为的近似数,它精确到千分位(即精确到0.001),共有4个有效数字1、6、6、7。2例题: 例1:下列由四舍五入法得到的近似数,各精确到哪一位?各有哪几个有效数字?(1)132.4; (2)0.0572; (3)2.40万解:(1)132.
4、4精确到十分位(精确到0.1),共有4个有效数字1、3、2、4;(2)0.0572精确到万分位(精确到0.0001),共有3个有效数字5、7、2;(3)2.40万精确到百位,共有3个有效数字2、4、0。注意:由于2.40万的单位是万,所以不能说它精确到百分位.。例2:用四舍五入法,按括号中的要求把下列各数取近似数。(1)0.34082(精确到千分位); (2)64.8 (精确到个位); (3)1.504 (精确到0.01);(4)0.0692 (保留2个有效数字); (5)30542 (保留3个有效数字)。解:(1)0.34082 0.341。(2)64.8 65。(3)1.504 1.50。
5、(4)0.0692 0.069。(5)30542 3.05104。注意:(1)例2的(3)中,由四舍五入得来的1.50与1.5的精确度不同,不能随便把后面的0去掉;(2)例2的(5)中,如果把结果写成30500,就看不出哪些是保留的有效数字,所以我们用科学记数法,把结果写成3.05104。(3)有一些量,我们或者很难测出它的准确值,或者没有必要算得它的准确值,这时通过粗略的估算就能得到所要的近似数,有时近似数也并不总是按“四台五入”法得到的。例如,某地遭遇水灾,约有10万人的生活受到影响。政府拟从外地调运一批粮食救灾,需估计每天要调运的粮食数。如果按一个人平均一天需要0.5千克粮食算,那么可以
6、估计出每天要调运5万千克的粮食。又如某校初一年级共有l12名同学,想租用45座的客车外出秋游。因为112452488,这里就不能用四合五入法,而要用“进一法”来估计应该租用客车的辆数,即应租3辆。3课堂练习: 课本:P73:1,2,3,4,5,6。三、课堂小结:正确理解和掌握近似数、准确数、精确度和有效数字等概念;要学会给出一个近似数,能准确地确定它精确到哪一位,或它有哪几个有效数字;准确、迅速、熟练地按照要求求出一个数的近似数;对例题中提到的注意事项应引起重视。四、课堂作业: 课本:P74: 1,2,3,4。 近似数和有效数字概念: 例1 例2 学生练习: 板书设计: 教学后记:学生在小学已学过近似数和有效数字,在实际运算时(特别是除法运算除不尽时)根据需要,按四舍五入法保留一定的小数位数,求出近似值。 教学设计中,首先通过大量实例,说明实际中遇到的大量的数都是近似数,这样,就引出了精确度的问题。由精确度,又引出了有效数字的概念。通过两个实例的教学,让学生知道如何根据实际中的要求或题目中的要求用四舍五入法取其近似数。