1、锐角三角函数-余弦和正切一、教学目标1、使学生知道当直角三角形的锐角固定时,它的邻边与斜边、对边与邻边的比值也都固定这一事实2、逐步培养学生观察、比较、分析、概括的思维能力EOABCD二、教学重点、难点重点:理解余弦、正切的概念难点:熟练运用锐角三角函数的概念进行有关计算三、教学过程(一)复习引入1、口述正弦的定义2、(1)如图,已知AB是O的直径,点C、D在O上,且AB5,BC3则sinBAC= ;sinADC= (2)2006成都如图,在RtABC中,ACB90,CDAB于点D。已知AC=,BC=2,那么sinACD( )ABCD(二)实践探索一般地,当A取其他一定度数的锐角时,它的邻边与
2、斜边的比是否也是一个固定值?如图:RtABC与RtABC,C=C =90o,B=B=,那么与有什么关系?分析:由于C=C =90o,B=B=,所以RtABCRtABC,即 结论:在直角三角形中,当锐角B的度数一定时,不管三角形的大小如何,B的邻边与斜边的比也是一个固定值。如图,在RtABC中,C=90o,把锐角B的邻边与斜边的比叫做B的余弦,记作cosB即 把A的对边与邻边的比叫做A的正切.记作tanA,即锐角A的正弦,余弦,正切都叫做A的锐角三角函数.(三)教学互动例2:如图,在中, ,BC=6, 求cos和tan的值.解: , 又例3:(1)如图(1), 在中,,求的度数.(2)如图(2),已知圆锥的高AO等于圆锥的底面半径OB的倍,求. (四)巩固再现1.在中,C90,a,b,c分别是A、B、C的对边,则有() ABCD 本题主要考查锐解三角函数的定义,同学们只要依据的图形,不难写出,从而可判断C正确.2. 在中,C90,如果那么的值为() ABCD分析? 本题主要考查锐解三角函数及三角变换知识。其思路是:依据条件,可求出;再由,可求出,从而,故应选D.3、如图:P是的边OA上一点,且P点的坐标为(3,4), 则cos_. 4、P81 练习1、2、3四、布置作业 P85 1教后反思: