1、图形的相似教学时间课题27.1 图形的相似(二)课型新授课教学目标知识和能力1知道相似多边形的主要特征,即:相似多边形的对应角相等,对应边的比相等2会根据相似多边形的特征识别两个多边形是否相似,并会运用其性质进行相关的计算过程和方法情感态度价值观教学重点相似多边形的主要特征与识别教学难点运用相似多边形的特征进行相关的计算教学准备教师多媒体课件学生“五个一”课 堂 教 学 程 序 设 计设计意图一、课堂引入1 如图的左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形2 问题:对于图中两个相似的四边形,它们的对应角,对应边的比是否相等3【结论】:(1)相似多边形的特征:相似多
2、边形的对应角相等,对应边的比相等反之,如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似 (2)相似比:相似多边形对应边的比称为相似比问题:相似比为1时,相似的两个图形有什么关系? 结论:相似比为1时,相似的两个图形全等,因此全等形是一种特殊的相似形二、例题讲解例1(补充)(选择题)下列说法正确的是( )A所有的平行四边形都相似 B所有的矩形都相似C所有的菱形都相似 D所有的正方形都相似 分析:A中平行四边形各角不一定对应相等,因此所有的平行四边形不一定都相似,故A错;B中矩形虽然各角都相等,但是各对应边的比不一定相等,因此所有的矩形不一定都相似,故B错;C中菱形虽然各对应边的比
3、相等,但是各角不一定对应相等,因此所有的菱形不一定都相似,故C也错;D中任两个正方形的各角都相等,且各边都对应成比例,因此所有的正方形都相似,故D说法正确,因此此题应选D例2(教材P37例题) 分析:求相似多边形中的某些角的度数和某些线段的长,可根据相似多边形的对应角相等,对应边的比相等来解题,关键是找准对应角与对应边,从而列出正确的比例式 解:略 例3(补充)已知四边形ABCD与四边形A1B1C1D1相似,且A1B1:B1C1:C1D1:D1A1=7:8:11:14,若四边形ABCD的周长为40,求四边形ABCD的各边的长分析:因为两个四边形相似,因此可根据相似多边形的对应边的比相等来解题解
4、:略三、课堂练习1教材P38练习2、32(选择题)ABC与DEF相似,且相似比是,则DEF 与ABC与的相似比是( )A B C D4(选择题)下列所给的条件中,能确定相似的有( )(1)两个半径不相等的圆;(2)所有的正方形;(3)所有的等腰三角形;(4)所有的等边三角形;(5)所有的等腰梯形;(6)所有的正六边形A3个 B4个 C5个 D6个5已知四边形ABCD和四边形A1B1C1D1相似,四边形ABCD的最长边和最短边的长分别是10cm和4cm,如果四边形A1B1C1D1的最短边的长是6cm,那么四边形A1B1C1D1中最长的边长是多少?作业设计必做教科书P38:2、3选做教科书P39:5、6、7教学反思