1、课 程 论 文 课程名称:陶瓷基复合材料 专业班级:材料09101 姓名:邱杰雄 学号:200912030117陶瓷基复合材料综述报告摘要:综述了陶瓷基复合材料增强体的种类陶瓷基复合材料界面和界面的增韧,并且介绍了陶瓷基复合材料的复合新技术以及发展动态关键词:陶瓷基 增强体 强韧1陶瓷基复合材料增强体复合材料中的增强体,按几何形状划分,有颗粒状(简称零维)、纤维状(简称一维)、薄片状(简称二维)和由纤维编织的三维立体结构。按属性划分,有无机增强体和有机增强体,其中有合成材料也有天然材料,复合材料最主要的增强体是纤维状的。复合材料中常见的纤维状增强体有玻璃纤维、芳纶纤维、碳纤维、硼纤维、碳化硅纤
2、维、氧化铝纤维和金属纤维等。它们有连续的长纤维、定长纤维、短纤维和晶须之分。玻璃纤维有许多品种,它是树脂基复合材料最常用的增强体,由玻璃纤维增强的复合材料是现代复合材料的代表,但是,由于它的模量偏低,而且使用温度不高,通常它不属于高级复合材料增强体。2.1陶瓷基复合材料的界面陶瓷基复合材料作为新一代高性能耐高温结构材料,在航空航天领域具有广阔的应用前景。然而,由于其固有的脆性,陶瓷材料在外载作用下极易发生脆性断裂。为了改善材料的韧性,不仅要使用高强纤维,还需要在纤维与基体之间增加界面相,从而引入裂纹桥联、裂纹偏转、纤维脱粘滑移等增韧机制。纤维与基体之间的热解碳界面层对于陶瓷基复合材料是至关重要
3、的。大量拉伸试验均表明,强界面材料模量高而强度低,断裂应变较小,断口整齐;弱界面材料模量低而强度高,断裂应变较大,纤维拔出较长,可见,界面可以起到增强和增韧的效果,这得益于弱界面的脱粘作用。界面脱粘可以减缓纤维应力集中,偏转基体裂纹扩展路径,避免裂纹沿某一横截面扩展,并阻止应力和能量在材料局部集中,使得材料韧性增加,不发生灾难性破坏。然而,基体裂纹的扩展也具有一定的随机性,与材料的初始缺陷有关。基体裂纹的连通会导致裂纹发生失稳扩展,最终造成材料的断裂失效。界面对陶瓷基复合材料拉伸性能的影响在20世纪就是研究热点,因此,这方面的文献报道较多,但主要成果是基于统计强度理论和剪滞理论建立起来的细观力
4、学模型,其中包括模量和强度的计算模型。2.2强韧化理论陶瓷材料的强化与增韧是材料工作者矢志不渝的研究目标。由于陶瓷材料在室温下缺少独立的滑移性而表现出质脆的弱点,它不像金属材料那样受力状态下产生凹痕或形变,而且它还是对裂纹、气孔和夹杂物等极细微的缺陷都很敏感的脆性材料。在改善和提高韧性的过程中,材料工作者们向陶瓷基体内添加各种陶瓷颗粒、纤维及晶须或它们的复合物,制备出各种陶瓷及复合材料,并且成功地应用于实际工业生产中,取得了可喜的成果。本文综述陶瓷基复合材料的增韧补强的方法和相关的增韧机理。2.2.1相变增韧氧化锆化合物具有三种晶型,高温型是立方型、中温型是四方型、常温下是单斜型。但是在外应力
5、的抑制下,中温型的四方相的氧化锆可以在室温下介稳地保持着,一旦在材料受到外来应力的情况下,这种受抑制的介稳四方相氧化锆将要发生相变。在其相变的过程中,要吸收一定的能量,这无疑是起着消耗外来能量的作用,同时在相变过程中,将要发生3%5%的体积变化,其结果是在裂纹尖端的周围产生微小的裂纹,这是材料韧性增加的表现。因此,氧化锆的相变将促成材料强度的提高以及韧性的增加。氧化锆的这一特性使它在陶瓷材料中成为一种非常有效的强化和增韧的添加物,由此构成了系列的氧化锆增韧陶瓷。氧化锆增韧陶瓷的出现,为改善陶瓷材料的脆性提供了崭新的思路。相变韧化的主要机理有应力诱导相变增韧、相变诱发微裂纹增韧、残余应力增韧等。
6、几种增韧机理并不互相排斥,但在不同条件下有种或几种机理起主要作用。(1)应力诱导相变增韧当部分稳定ZrO2增韧陶瓷烧结致密后,四方相ZrO2颗粒弥散分布于其它陶瓷基体中(包括ZrO2本身),冷却时亚稳四方相颗粒受到基体的抑制而处于压应力状态,这时基体沿颗粒连线方向也处于压应力状态。材料在外力作用下所产生的裂纹尖端附近由于应力集中的作用,存在张应力场,从而减轻了对四方相颗粒的束缚,在应力的诱发作用下会发生向单斜相的转变并发生体积膨胀,相变和体积膨胀的过程除消耗能量外,还将在主裂纹作用区产生压应力,二者均阻止裂纹的扩展,只有在增加外力的作用下才能使裂纹继续扩展,于是材料强度和断裂韧性大幅度提高。(
7、2)显微裂纹增韧部分稳定ZrO2陶瓷在烧结冷却过程中,存在较粗四方相向单斜相的转变,引起体积膨胀,在基体中产生弥散分布的裂纹或者主裂纹,扩展过程中在其尖端过程区内形成的应力诱发相变导致的微裂纹,这些尺寸很小的微裂纹在主裂纹尖端扩展过程中会导致主裂纹分叉或改变方向,增加了主裂纹扩展过程中的有效表面能,此外裂纹尖端应力集中区内微裂纹本身的扩展也起着分散主裂纹尖端能量的作用,从而抑制了主裂纹的快速扩展,提高了材料的韧性,这种机制称作微裂纹增韧。(3)残余压应力增韧陶瓷材料可以通过引入残余压应力达到强韧化的目的。控制含弥散四方ZrO2颗粒的陶瓷在表层发生tm相变,引起表面体积膨胀而获得表面残余压应力。
8、由于陶瓷断裂往往起始于表面裂纹,表面残余压应力有利于阻止表面裂纹的扩展,从而起到了增强增韧的作用。当晶粒直径在dcd时,如果复合材料处在低于制造温度的环境下,基体中会产生沿纤维轴向的压缩应力。此残余应力可以延迟基体开裂,当复合材料承受沿纤维轴向的拉伸载荷时,强度、韧性均将增加。(2)裂纹扩展受阻当纤维的断裂韧性比基体本身的断裂韧性大时,裂纹垂直于纤维扩展至纤维时可被阻止,甚至由于纤维的残余拉应力而使裂纹闭合。(3)纤维断裂和纤维断头拔出,简称纤维拔出具有较高断裂韧性的纤维,当基体裂纹扩展到达纤维时,应力集中导致结合较弱的纤维/基体界面解离,在应变进一步增加时,导致纤维断裂并使其断头从基体中拔出
9、。(4)裂纹偏转裂纹沿结合较弱的纤维/基体界面弯折,偏离原来的扩展方向,使裂纹扩展路径增加。(5)相变增韧基体中裂纹尖端的应力场引起裂纹尖端附近的基体发生相变,亦称应力诱导相变。当相变造成体积膨胀时,它会挤压裂纹使之闭合。应力诱导相变的增韧机制有随温度升高而降低的特性,因此不适宜高温工程的材料,而其余的增韧机制皆可在高温下产生效果。(6)纤维/基体界面解离界面解离导致裂纹偏转和纤维拔出,这些过程都将吸收能量,使得材料的韧性及断裂功增加,而裂纹扩展受阻和基体预压缩应力可以阻碍裂纹萌生或阻碍裂纹生长,即需要更高的外加载荷才能使裂纹扩展。(7)纤维桥联增韧指在基体开裂后,纤维承受外加载荷,并在基体的
10、裂纹面之间架桥。桥联的纤维对基体产生使裂纹闭合的力,从而增大材料的韧性纤维强韧化的效果不仅仅取决于纤维和基体本身的性质,而且还和它们之间性能的对比关系以及界面结合状态密切相关。因此,要想获得良好的强韧化效果,还必须要考虑纤维与基体之间的物理相容性和化学相容性。选材时应尽量选择相容性好的纤维与陶瓷基体的组合,若条件无法满足时,可通过对基体性能进行调整或对纤维表面进行适当的涂层处理等办法来改善相容性。根据纤维增强陶瓷基复合材料对界面相的要求,理想的界面相应具有以下功能:(1)松粘层作用。当基体裂纹扩展到界面区时,此界面相能够使裂纹发生偏转,从而达到调整界面应力,阻止裂纹向纤维内部扩展的目的;(2)
11、载荷传递作用。由于纤维是主要的载荷承担者,因此界面相必须有足够的强度来传递载荷,使纤维承受大部分载荷;(3)缓解层作用。由于纤维与基体间的热膨胀系数(CTE)差异易导致界面出现残余热应力而影响复合材料的性能,因此,界面相必须具备缓解纤维与基体间界面残余热应力的作用;(4)阻挡层作用。高温下基体与纤维之间的互扩散(甚至化学反应),不仅使纤维与基体间的界面结合增强,而且导致纤维本身性能大幅度降低,因此,界面相必须具有阻止或抑制纤维与基体间原子互扩散和化学反应的作用。高强度、高韧性复合材料应满足如下要求:纤维或晶须的强度和模量高,且高于基体;在复合材料制备的温度和气氛下,增强体性能不发生机械损伤和化
12、学反应造成的降级;纤维热膨胀系数高于或等于基体;界面应既能保证纤维与基体间的应力传递,又能在裂纹扩展过程中适当解离,并使从基体中拔出的纤维断头有足够的长度。2.2.3颗粒增韧纤维增韧是解决陶瓷脆性的主要途径之一,因此,近年来陶瓷基纤维复合材料发展较快,陶瓷的室温和高温强度及韧性均已得到显著改善。然而,由于品种上的限制,以及毒性、价格等方面的问题,纤维的应用受到一定程度的制约。以颗粒补强增韧的陶瓷基复合材料是陶瓷材料的另一新品种。由于过去采用微米级颗粒,其补强增韧效果远不能与纤维补强的陶瓷基复合材料相比拟,颗粒尺度小到几十至一二百纳米时,效果会发生重大变化,甚至产生质的飞跃。最近国际上出现的高性
13、能纳米颗粒复相陶瓷就是在陶瓷基体结构中弥散有纳米级颗粒的陶瓷基复合材料。例如,日本研究人员用氧化铝和碳化硅超细粉合成的高强度纳米复相陶瓷在1100时强度超过1500MPa,并认为获得超强度、超韧性结构陶瓷的主要方法是采用微米和纳米混杂的复合技术。由此可预见纳米级复相陶瓷将成为21世纪材料开发的主要方向。用颗粒作为增韧剂,制作颗粒增韧陶瓷基复合材料,其原料的均匀分散及烧结致密化都比短纤维及晶须复合材料简便易行。因此,尽管颗粒的增韧效果不如晶须与纤维,但如颗粒种类、粒经、含量及基体材料选择得当,仍有一定的韧化效果,同时会带来高温强度、高温蠕变性能的改善。所以,颗粒增韧陶瓷基复合材料同样受到重视,并
14、开展了有效的研究工作。颗粒增韧陶瓷基复合材料的韧化机理主要有细化基体晶粒、裂纹转向与分叉等,近10年的研究工作已充分表明,纳米颗粒复合可同时提高材料的强度、韧性和耐高温性能。其中强度提高特别显著,韧性提高幅度还不够理想,下一步的主要目标是进一步提高韧性。专家们认为,可以采用如下的研究思路:1两种或两种以上纳米颗粒同时弥散形成“复合内晶型”结构:我国研究人员最近研制的氧化铝/(碳化硅-氧化钇掺杂的四方相氧化锆)纳米复合陶瓷表明,加入体积分数为5%的氧化钇掺杂的四方相氧化锆可使材料断裂韧性在氧化铝/碳化硅基础上提高40%左右,且强度未降低。2微米和纳米混杂复合:根据微米复合(如晶须、纤维复合)可使
15、陶瓷材料的韧性得到很大改善的事实,可以在陶瓷基体中同时引入微米复合和纳米复合,使两种复合相互补充,协同作用,就有可能制备出超强、超韧的高性能陶瓷材料。在陶瓷基体中引入纳米分散相并进行复合,不仅可以大幅度提高其断裂强度和断裂韧性,明显改善其耐高温性能,而且也能提高材料的硬度、弹性模量和抗热震、抗高温蠕变等性能。现已成功地制备出多种体系的微米-纳米复合陶瓷,如Al2O3/Si3N4、Al2O3/SiC、MgO/SiC、Si3N4/SiC等(式中分子表示基质,分母表示纳米分散相),材料的力学性能得到明显改善2.2.4自增韧陶瓷材料如果在陶瓷基体中引入第二相材料,该相不是事先单独制备的,而是在原料中加
16、入可以生成第二相的原料,控制生成条件和反应过程,直接通过高温化学反应或者相变过程,在主晶相基体中生长出均匀分布的晶须、高长径比的晶粒或晶片的增强体,形成陶瓷复合材料,则称为自增韧。这样可以避免两相不相容、分布不均匀,强度和韧性都比外来第二相增韧的同种材料高,利用这一点,可以进一步提高材料的各种力学性能。自增韧是能够有效提高陶瓷断裂韧性的一种新工艺,主要是通过工艺因素的控制,使陶瓷晶粒在原位(in-situ)形成有较大长径比的形貌,从而起到类似于晶须的补强增韧作用。目前,自增韧在陶瓷复合材料中的应用很广泛,包括Si3N4、Sialon、Al-Zr-C、Ti-B-B、SiC、A12O3、ZrB2/
17、ZrC0.6/Zr材料和玻璃陶瓷等。近年来,研究最多的是Si3N4和Sialon。自增韧陶瓷复合材料是通过在陶瓷基体中直接发生高温化学反应或者相变过程,在主晶相基体中生长出均匀分布的晶须、棒状晶粒或晶片的增强体。棒状或片状晶粒的形成必须满足热力学相动力学条件。自增韧的实质是通过工艺因素的控制,使陶瓷晶粒在原位形成有较大长径比的形貌,从而起到类似于晶须增韧补强作用。3陶瓷基复合材料复合新技术陶瓷基复合材料的制造方法分传统的制备技术和新的制备技术传统的制备技术如冷压烧结法、反应烧结法、热压法等。新技术主要指在20世纪70年代开始发展起来的技术,如渗透,直接氧化,以化学反应为基础的CVD、CVI,溶
18、胶-凝胶,聚合物热解,白蔓燃高温合成(SHS)等。陶瓷基复合材料的制造分为两个步骤:第一步是将增强材料掺入未固结(或粉末状)的基体材料中,排列整齐或 混合均匀;第二步是运用各种加工条件在尽量不破坏增强材料和基体性能的前提, 制成复合材料制品。根据陶瓷基复合材料的制造步骤,在加工制备复合材料时,应根据使用要求,相应地增强材料和基体的复合,针对不同的增强材料(纤维、晶须、颗粒),选择相应的加工条件等因素。 选择哪种增强材料和基体,除了根据使用要求,如温度、强度、弹性模量等,两种材料间一些性能的配合也直接影响复合材料的性能。通常要考虑的两种材料的主要因素如下:物理因素:熔点、挥发度、密度、弹性模量、
19、热膨胀系数、蠕变性 能、强度、断裂韧性等。纤维和基体的相容性因素:化学相容性、热性能相容性(主要是高温状态)、同环境的相容性(包括内部和外部,而外部环境的相容主要包括 氧化和蒸发)。 针对不同的增强材料,已经开发了多种加工技术。例如,对于以连续纤维增强的陶瓷基复合材料的加工通常采用下面三种方法:首先采用料浆浸渍工艺,然后再热压烧结;将连续纤维编织制成预成型坯件,再进行化学气相沉积(CVD),化学气相渗透(CVI),直接氧化沉积(Lanxide); 利用浸渍-热解循环的有机聚合物裂解法制成陶瓷基复合材料。对于颗粒弥散型陶瓷基复合材料,主要采用传统的烧结工艺,包括常压烧结、热压烧结或热等静压烧结。
20、 此外,一些新开发的工艺如固相反应烧结、高聚物先驱体热解、CVD、溶胶凝胶、直接氧化沉积等也可用于颗粒弥散型陶瓷基复合材料的制备。例:晶须补强陶瓷基复合材料的制备方法:将晶须在液体介质中经机械或超声分散,再与陶瓷基体粉末均匀混合,制成一定形状的坯件,烘干后热压或热等静压烧结。制备晶须补强陶瓷基复合材料时,为了克服晶须在烧结过程中的搭桥现象,坯件制造采用压力渗滤或电泳沉积成型上艺。此外,原位生长工艺、CVD、CAI、固相反应烧结、直接氧化沉积等工艺也适合于制备晶须补强陶瓷基复合材料。4陶瓷基复合材料现状与发展动态复合材料所面临的问题是:怎样把不同的材料有效地结合起来使某些性能得到加强,同时又把成
21、本控制在市场可接受的范围。目前,只有少数CMC达到实际应用的水平,大多数尚处于实验室研究阶段,但从其具有的优异性能和研究状况来看,CMC有着非常广阔的应用前景。因而,对CMC的未来发展趋势作一预测是非常有必要和有意义的。4.1为了保证陶瓷基复合材料性能的可靠,除了从工艺上尽量保证陶瓷基复合材料的均一性及完整性之外,对材料性能的准确评价也是一个很重要的问题。因此,无损探伤是一项急待开展的工作。4.2由宏观复合形式向微观复合形式发展。目前应用最多的是纤维、晶须补强复合材料补强剂尺寸较大属于宏观复合。所谓微观复合就是均质材料在加工过程中内部析出补强剂,(晶体)与剩余基体构成的原位复合材料或用纳米级补
22、强剂补强的纳米复合材料。4.3由结构复合向结构功能一体化方向发展。到目前为止,研究的陶瓷基复合材料基本上是结构复合型材料。将逐步向结构功能一体化方向发展,也就是复合材料既能满足力学性能的要求,同时还具有其他物理、化学和电学性能。4.4从一元补强、双元混杂复合向多元混杂方向发展。用纤维、晶须或颗粒补强剂的陶瓷复合材料已经取得良好的效果,同时二种补强剂双元混杂的复合材料也取得了一定进展,将会向多元混杂的方向发展。比如在混杂的纤维补强剂中还可以加入颗粒填料二种以上的纳米颗粒同时弥散的复合材料,多元混杂有可能制备出超强度、超韧性的高性能陶瓷材料。4.5由复合材料的常规设计向电子计算机辅助设计发展。参考
23、文献1孙康宁,尹衍升,李爱民.金属间化合物-陶瓷基复合材料M.北京:机械工业出版社,20022尹衍升,李嘉.氧化锆陶瓷及其复合材料M.北京:化学工业出版社,20043张玉军,张伟儒.结构陶瓷材料及其应用M.北京:化学工业出版社,20054穆柏春等.陶瓷材料的强韧化M.北京:冶金工业出版社,20025陈岚,李锐星.ZrO2陶瓷的制备及应用研究进展,功能材料J,2002,33(2):1291326周泽华,丁培道.相含量的变化对氧化锆陶瓷性能的影响,材料热处理学报J,2002,23(1):43457闫洪,窦明民.二氧化锆陶瓷的相变增韧机理和应用J,2000,21(1):46508何新波,杨辉,张长瑞,等.连续纤维增强陶瓷基复合材料概述.材料科学与工程J,2002,20(2):2779仵亚红.纤维增强陶瓷基复合材料的强化、韧化机制.北京石油化工学院学报J,2003,11(3):3437