收藏 分销(赏)

人工智能翻译.docx

上传人:xrp****65 文档编号:7501519 上传时间:2025-01-06 格式:DOCX 页数:11 大小:438.10KB
下载 相关 举报
人工智能翻译.docx_第1页
第1页 / 共11页
人工智能翻译.docx_第2页
第2页 / 共11页
人工智能翻译.docx_第3页
第3页 / 共11页
人工智能翻译.docx_第4页
第4页 / 共11页
人工智能翻译.docx_第5页
第5页 / 共11页
点击查看更多>>
资源描述

1、10.4并发神经模糊系统模糊系统和神经网络可以为电厂没有相互合作并行工作在自己。例如,一些日本空调使用FS阻止压缩机从冰冷的冬天,使用神经网络估计指数参数的安慰, 被称为预测意味着投票(PMV)。结构可以被定义为一个函数的空间温度,平均辐射温度、相对气流速度、湿度、热阻用户的衣服,代谢率。有些结构各参数不能使用传感器测量,例如,热电阻的服装和代谢率。神经网络可以用来估计PMV指标从一组测量变量等房间温度、时间微分的房间温度、室外空气温度、空气流量、设置温度和气流方向(齐藤et al .,1990)。传感器数据和PVM作为输入和输出PVM = 房间温度、平均辐射温度、相对气流速度、潮湿密度,热阻

2、用户的服装、代谢率传感器数据= 房间温度、时间微分的房间温度、室外空气温度、空气流量、设定温度、气流方向神经网络进行非线性映射到结构各传感器测量值的索引。松下电气公司所使用的技术已经在他们的空产品如图10.13所示。10.5混合神经模糊系统在任何模糊系统,推论使用规则库和使用不同的方法去模糊化如重心是最耗时的部分。混合方法的想法是解释一个模糊系统的神经网络。这里采用的策略神经模糊系统,首先,取代用神经网络的规则库推理处理简化其次,发现模糊系统的参数学习方法从神经网络的方法。一种常见方法应用学习算法模糊系统是代表在特殊neural-network-like架构,如反向传播学习算法可以用来训练系统

3、。在第一种神经模糊系统,可以有三种类型的模糊神经网络只替换规则库,输入和输出没有学习算法用于优化MFs或系统的参数。这些都是模糊的三种基本类型系统。应用启发式或试错方法优化和调整参数:*与Mamdani-type模糊神经网络的模糊推理系统, *与Takagi-Sugeno-Kang-type模糊神经网络的模糊推理系统, *与Tsukamoto-type模糊神经网络的模糊推理系统。在第二种神经模糊系统中,如反向传播或学习算法混合训练应用于系统的优化或调整参数。有不同的类神经模糊系统在1990年代的文献报道。其中的一些详细讨论在下面:*模糊自适应学习控制网络(FALCON), *近似reasoni

4、ng-based智能控制(ARIC), *广义近似reasoning-based智能控制(GARIC), *模糊基函数网络(FBFN), *模糊净(有趣的), *自适应神经模糊推理系统(简称ANFIS), * infuzzy模糊推理和神经网络推理软件(最好), *神经模糊控制器(NEFCON), * MANFIS CANFIS, * Self-constructing神经模糊推理网络(SONFIN), *模糊神经网络(NFN)。10.5.1模糊神经网络的模糊推理系统与Mamdani-Type在本节中讨论的模糊神经网络是一种Mamdani-type模糊系统规则库是一个神经网络所取代。的详细描述M

5、amdani-type模糊在第三章提供推理系统。为简单起见,一个简单的two-input single-output 系统如图10.14所示。图10.14所示的模糊神经网络组成五层,描述如下。1层:本层的节点表示的模糊隶属度, 在X1和AJ,有两个输入。这些节点计算输入的会员等级的X2模糊化操作:第2层:这一层的每个节点代表一个模糊系统的规则。每个节点的发射强度决定了规则,定义为这个函数。表示推测操作使用该产品的规则或最小规则。例如,方程(10.4)定义了使用的发射强度产品规则: 归一化权重可以提供相对个人的发射强度的规则。归一化计算方程(10.5)。归一化权重不习惯在上面体系结构。第三层:这

6、一层中的每个节点表示模糊MF输出。MFs pre-defuzzified和去模糊化操作的输出是表示去模糊化操作应用于MFsC是每个规则的顺向MFs值。不同类型的去模糊化操作,在第二章所讨论的,可以在这里申请第四层:这一层中的单一节点产生最终的输出通过聚合解雇规则值,定义为去模糊化操作应用于MFsC是每个规则的顺向值。不同类型的去模糊化操作,在第二章所讨论的,可以在这里申请第四层:这一层中的单一节点产生最终的输出通过聚合解雇规则值,定义为10.5.2 Takagi-Sugeno-type模糊模糊神经网络推理系统在本节讨论的模糊神经网络是一个关野型系统(又称asTakagi - 关野康型模糊系统)

7、。目前的模糊神经系统,主要是关野型模糊系统的规则库由NE乌拉尔净接替工作,并把输出线性函数,而不是关野型fuzzyinference模糊MFs.A详细说明中描述的MF 系统是在第3章中,为方便起见简单的双输入单输出系统是 如图10.15所示的模糊神经网络由四个 层,如下所述。第1层:该层每个节点i的模糊隶属函数的节点 和x1是两个输入。这些节点计的隶属度 其中,x2 输入:其中j= 1,2,第2层:在该层中的每个节点是一个固定的节点表示标记的规则 每个节点确定规则的发射强度: 该函数表示的推理操作使用产品的规则或分 (X),(x)的一个正常化rul例子。是一个最小的操作:最小A1乙2J 的权重

8、,可以进行这将提供的相对发射强度个别规则归一化可以按照公式进行计算 (10.5)三层:在该层中的每个节点是表示一个线性函数的输出节点, 定义为其中a,b和c,I =1,2,.,4是三统治随之而来的部分参数。每个节点计算后事件部分的加权值作为归一化的权重是不使用于图10.15。,b和c是使用任何启发式或尝试和参数则f= c为常数来估计 错误的方法如果参数能值。一些研究人员称之为零阶高木 - 关野型系统 *被选择为c从预随便或通过试验和错误选择。如果CII解模糊的的Mamdani型输出微丝的值,如图10.14,然后theTakagi-Sugeno型型系统等价于一个的Mamdani型系统。4层:这一

9、层的单个节点通过聚合所有燃煤规则值产生输出:如果它是一个零阶高木 - 关野型系统中,输出被定义为*如果选择C为c,则输出定义为因此,模糊神经系统已经建立,它的功能相当于一个高木 - 关野型模糊模型,对于一个的Mamdani型推理系统具有最大/最小组合物, 相应的模糊神经系统可以在离散近似被用来代替积分在一个中心位置(制或其他类型)去模糊化方案来构建。10.5.3模糊神经网络与冢本型模糊 推理系统冢本型模糊神经系统主要冢本型模糊系统的规则库由单调的MF描述的前馈神经网络的输出微丝更换。冢本型模糊推理系统的详细描述中提供了第3.A冢本型模糊神经系统具有两个输入和各层的说明如下1输出示于图10,16

10、。第1层:每个节点我在这一层是用模糊隶属函数和X的一个节点有两个输入。这些节点计算的隶属度 其中j =1,2。 二层:在该层中的每个节点是一个固定的节点表示的规则的数量,标 .,R,每个节点确定一个规则的发射强度 的功能。使用该产品规则或min规则表示推理操作。例如,。产品规则定义为第三层:在这一层的每个节点代表一个单调函数C 中,k=1,2,3,4 为输出微丝。输出微丝非模糊化操作被表示为即,Z,I= 1,2,.,4()是施加到微丝的去模糊化操作 是每个规则的结果微丝的解模糊值。上单调函数的去模糊化操作在第2章中讨论。4层:这一层的单个节点通过聚合所有燃煤规则值产生输出:但应当指出的是,三个

11、模型(的Mamdani型,高木 - 关野型和冢本-型)以上讨论不使用任何学习算法,而它们依赖于启发式或 试验和误差方法的输入和输出微丝和其他参数。模糊神经 在本节中开发系统的功能等同于一个冢本型模糊模型。对于一个的Mamdani型推理系统,最大/最小组成,相应的系统 如果离散逼近中使用的重心来代替积分(或可以被构造 其他类型的)去模糊化方案。例10.1建造一个零阶高木-关野型模糊神经系统从的Mamdani型模糊系统的描述。一个的Mamdani型模糊系统是由两个输入端,误差和误差的变化,和描述 单一的输出扭矩。有两种微丝为每个输入和3微丝的输出如图所示在图10.17。规则库是示于表10.2。 零

12、阶高木 - 关野型模糊神经系统是从上述发展 在Mamdani型型模糊系统的描述。的模糊神经系统具有两个输入和一个输出示于图10.18。层的说明如下第1层:每个节点我在这一层是固定节点三角形隶属 和x是误差和误差的变化。这些节点计算其中函数的输入通过模糊化X12成员船级:4层:在该层中每一个节点包含由定义随之微丝的预解模糊恒定值其中MF是对微丝和z所选择的解模糊操作 微丝中的的Mamdani型模糊随之而来的部分模糊化值 制度。每个节点计算各个事件部分的加权值 作为统治第5层:这一层的单个节点通过聚合所有燃煤规则值产生输出:10.5.4基于神经网络模糊系统(PI -网)在第10.4.1-10.4.

13、3中描述的模糊神经系统通常用于替换一些规则库用神经网络和应用的产品或最小规则进行推理。高木 - 模糊系统似乎比的Mamdani型模糊系统更灵活。仍有两个缺点。首先,识别模糊系统的不微不足道的,这使得它难以适用于实时系统。其次,不仅是微丝限于分段线性函数,但随之而来的部分也被认为是线性的。这个问题仍然没有得到解决,直到神经网络相结合,与模糊系统把合适的学习能力和非线性映射能力。 Jin等人。( 1995)提出了那里的规则触发强度计算的混合神经模糊系统从高木 - 关野模糊系统中的一个部分和输出的先行部分把该事件部分是从其他部分的 sigma神经网络估计。在这种架构中,一个模糊神经元被使用进行一些基

14、本的模糊操作行动(如最小和最大操作) 。模糊神经结构如图在图10.19 。模糊-PI- sigma神经网络的体系结构是的一个扩展高木 - 关野模糊模型(下图),其中一层edneural网络模型(上)是用来估计结果输出和两个模型都使用一组产品节点联合(PI-节点)。模型(图10.19的下部)的FS部分代表的前件部分如下。高木 - 关野模糊系统和计算规则触发强度该模型的神经网络部分代表高木 - 关野系统的后续部分,如下所示。计算输出第1层:在这一层的每个节点具有非线性激活函数神经元。该层的输出被计算为的输入和所述第一层和其中间的连接权重是一个S形的型非线性函数。 2层:在该层中的每个节点是一个线性

15、求和神经元(西格玛 - 神经元),该层的输出计算。在第一和第二层之间的连接权重的偏压到第二层的神经元这种混合模糊神经网络相当于一个高木 - 关野型模糊系统, 线性随之而来的功能已经扩展到非线性函数和参数 通过在图10.19的图的上半部分中所示的神经网络估计。 要调整的结果参数和MF的参数,错误backpropa-gation算法应该扩展为梯度法要求可微函数。 因此,最小的操作员将需要进行变换。假设所需的输出 。误差函数定义如下: thepi-网络这种混合模糊神经网络相当于一个高木 - 关野型模糊系统, 线性随之而来的功能已经扩展到非线性函数和参数 通过在图10.19的图的上半部分中所示的神经网

16、络估计。 要调整的结果参数和MF的参数,错误backpropa-gation算法应该扩展为梯度法要求可微函数。 因此,最小的操作员将需要进行变换。假设所需的输出 。误差函数定义如下:10.5.5模糊神经系统结构与椭球输入空间 输入空间的传统分割导致的模糊规则的指数增长与 越来越多的输入。为了控制规则的指数增长,青山 和Venkatasubramanian(1995)提出的网格划分和组合椭 soidal分区。网格划分用于输入尺寸,其中先验知识 边缘是可用的和椭圆形的分区被用于其他输入尺寸(青山 等人,1995)。模糊神经网络共分四层。输入尺寸 分为两组:表示为克维度和一个模糊椭一个模糊分区格 分区表示为E-维度。图10.20显示了FS-NN架构椭球投入。

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 应用文书 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服