1、解直三角形应用教学时间课题解直三角形应用(三)课型新授课教学目标知识和能力使学生会把实际问题转化为解直角三角形问题,从而会把实际问题转化为数学问题来解决过程和方法逐步培养学生分析问题、解决问题的能力情感态度价值观渗透数学来源于实践又反过来作用于实践的观点,培养学生用数学的意识教学重点要求学生善于将某些实际问题中的数量关系,归结为直角三角形元素之间的关系,从而利用所学知识把实际问题解决教学难点要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而利用所学知识把实际问题解决教学准备教师多媒体课件学生“五个一”课 堂 教 学 程 序 设 计设计意图1导入新课上节课我们解决的实
2、际问题是应用正弦及余弦解直角三角形,在实际问题中有时还经常应用正切和余切来解直角三角形,从而使问题得到解决2例题分析例1如图6-21,厂房屋顶人字架(等腰三角形)的跨度为10米,A-26,求中柱BC(C为底边中点)和上弦AB的长(精确到0.01米)分析:上图是本题的示意图,同学们对照图形,根据题意思考题目中的每句话对应图中的哪个角或边,本题已知什么,求什么?由题意知,ABC为直角三角形,ACB=90,A=26,AC=5米,可利用解RtABC的方法求出BC和AB学生在把实际问题转化为数学问题后,大部分学生可自行完成例题小结:求出中柱BC的长为2.44米后,我们也可以利用正弦计算上弦AB的长。如果
3、在引导学生讨论后小结,效果会更好,不仅使学生掌握选何关系式,更重要的是知道为什么选这个关系式,以培养学生分析问题、解决问题的能力及计算能力,形成良好的学习习惯另外,本题是把解等腰三角形的问题转化为直角三角形的问题,渗透了转化的数学思想例2如图,一艘海轮位于灯塔P的北偏东65方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南东34方向上的B处。这时,海轮所在的B处距离灯塔P有多远(精确到0.01海里)?PAB6534 引导学生根据示意图,说明本题已知什么,求什么,利用哪个三角形来求解,用正弦、余弦、正切、余切中的哪一种解较为简便?3巩固练习为测量松树AB的高度,一个人站在距松树15米的E处,测得仰角ACD=52,已知人的高度是1.72米,求树高(精确到0.01米)首先请学生结合题意画几何图形,并把实际问题转化为数学问题RtACD中,D=Rt,ACD=52,CD=BE=15米,CE=DB=1.72米,求AB?(三)总结与扩展请学生总结:通过学习两个例题,初步学会把一些实际问题转化为数学问题,通过解直角三角形来解决,具体说,本节课通过让学生把实际问题转化为数学问题,利用正切或余切解直角三角形,从而把问题解决本课涉及到一种重要教学思想:转化思想作业设计必做教科书P92:5选做教科书P92:6教学反思