1、19.2.2 菱形(二)1理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;2在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力二、重点、难点1教学重点:菱形的两个判定方法2教学难点:判定方法的证明方法及运用 三、例题的意图分析本节课安排了两个例题,其中例1是教材P109的例3,例2是一道补充的题目,这两个题目都是菱形判定方法的直接的运用,主要目的是能让学生掌握菱形的判定方法,并会用这些判定方法进行有关的论证和计算这些题目的推理都比较简单,学生掌握起来不会有什么困难,可以让学生自己去完成程度好一些的班级,可以选讲例3四、课堂引入1复习(1)菱
2、形的定义:一组邻边相等的平行四边形; (2)菱形的性质1 菱形的四条边都相等;性质2 菱形的对角线互相平分,并且每条对角线平分一组对角;(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)2【问题】要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?3【探究】(教材P109的探究)用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形转动木条,这个四边形什么时候变成菱形?通过演示,容易得到:菱形判定方法1 对角线互相垂直的平行四边形是菱形注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直 通过
3、教材P109下面菱形的作图,可以得到从一般四边形直接判定菱形的方法:菱形判定方法2 四边都相等的四边形是菱形五、例习题分析例1 (教材P109的例3)略例2(补充)已知:如图ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F求证:四边形AFCE是菱形证明: 四边形ABCD是平行四边形, AEFC 1=2又 AOE=COF,AO=CO, AOECOF EO=FO 四边形AFCE是平行四边形又 EFAC, AFCE是菱形(对角线互相垂直的平行四边形是菱形) 例3(选讲) 已知:如图,ABC中, ACB=90,BE平分ABC,CDAB与D,EHAB于H,CD交BE于F求证:四边形CEHF为
4、菱形 略证:易证CFEH,CE=EH,在RtBCE中,CBE+CEB=90,在RtBDF中,DBF+DFB=90,因为CBE=DBF,CFE=DFB,所以CEB=CFE,所以CE=CF所以,CF=CE=EH,CFEH,所以四边形CEHF为菱形六、随堂练习1填空:(1)对角线互相平分的四边形是 ;(2)对角线互相垂直平分的四边形是_;(3)对角线相等且互相平分的四边形是_;(4)两组对边分别平行,且对角线 的四边形是菱形2画一个菱形,使它的两条对角线长分别为6cm、8cm3如图,O是矩形ABCD的对角线的交点,DEAC,CEBD,DE和CE相交于E,求证:四边形OCED是菱形。七、课后练习1下列条件中,能判定四边形是菱形的是 ( )(A)两条对角线相等 (B)两条对角线互相垂直(C)两条对角线相等且互相垂直 (D)两条对角线互相垂直平分2已知:如图,M是等腰三角形ABC底边BC上的中点,DMAB,EFAB,MEAC,DGAC求证:四边形MEND是菱形3做一做:设计一个由菱形组成的花边图案花边的长为15 cm,宽为4 cm,由有一条对角线在同一条直线上的四个菱形组成,前一个菱形对角线的交点,是后一个菱形的一个顶点画出花边图形