收藏 分销(赏)

陕西省神木县大保当初级中学七年级数学下册 2.2 探索直线平行的条件教案(第1课时) 北师大版.doc

上传人:s4****5z 文档编号:7445677 上传时间:2025-01-04 格式:DOC 页数:6 大小:144.50KB
下载 相关 举报
陕西省神木县大保当初级中学七年级数学下册 2.2 探索直线平行的条件教案(第1课时) 北师大版.doc_第1页
第1页 / 共6页
陕西省神木县大保当初级中学七年级数学下册 2.2 探索直线平行的条件教案(第1课时) 北师大版.doc_第2页
第2页 / 共6页
陕西省神木县大保当初级中学七年级数学下册 2.2 探索直线平行的条件教案(第1课时) 北师大版.doc_第3页
第3页 / 共6页
陕西省神木县大保当初级中学七年级数学下册 2.2 探索直线平行的条件教案(第1课时) 北师大版.doc_第4页
第4页 / 共6页
陕西省神木县大保当初级中学七年级数学下册 2.2 探索直线平行的条件教案(第1课时) 北师大版.doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、2.2探索直线平行的条件(第1课时)1经历探索直线平行条件的过程,掌握利用同位角相等判别直线平行的结论,并能解决一些问题。2会识别由“三线八角”构成的同位角,会用三角尺过已知直线外一点画这条直线的平行线。3经历观察、操作、想象、推理、交流等活动,体会利用操作、归纳获得数学结论的过程,进一步发展空间想象、推理能力和有条理表达的能力。4使学生在积极参与探索、交流的数学活动中,体验数学与实际生活的密切联系,激发学生的求知欲,感受与他人合作的重要性。二、 教学设计分析:本节课共设计了六个环节:巧妙设疑,复习引入;联系实际,积极探索;变式训练,熟练技能;学以致用,步步提高;拓展延伸,迁移运用;总结反思,

2、布置作业。第一环节:巧妙设疑,复习引入活动内容:教师通过设置问题串,层层设疑,在引导学生思考、层层释疑的基础上,既复习旧知,做好新知学习的铺垫,同时也不断激活学生思维、生成新问题,引起认知冲突,从而自然引入新课。问题1:在同一平面内两条直线的位置关系有几种?分别是什么?ABDCO 学生很容易回答出“在同一平面内两条直线的位置关系有两种,分别是相交和平行”,再进一步针对相交和平行分别提出问题2、3。问题2:如图,两条直线相交所构成的四个角中分别有何关系?借助两条直线相交的基本图形复习“两线四角”的关系,为探索“三线八角”的关系奠定基础。问题3:什么叫两条直线平行?复习平行线的定义:在同一平面内,

3、不相交的两条直线叫做平行线。问题4:观察下面每幅图中的直线a,b,它们分别平行吗?你能验证吗?三组直线看上去似乎不平行,其实它们分别都是平行的,这是由于背景造成的视觉误差,所以按照平行线的定义仅凭观察来判断直线的平行关系是不够的,这就需要进一步寻求证据,本节课老师将和同学们一起来探索直线平行的条件,由此引入新课。活动目的:问题1,2,3抓住了本章学习的重点平行和相交,从学生已有的知识入手,以问题为载体,自然复习同一平面内两条直线的位置关系以及平行、相交的基本图形和基本知识,承上启下为新课的学习做好铺垫,有利于学生形成完整的知识结构。学生对问题3的回答进一步复习了平行线的定义,但是在利用平行线的

4、定义解决问题4时却遇到了困难,由于背景的干扰,他们仅凭观察无法判断两条直线是否平行,这时老师可以启发学生用推三角板的方法去验证,得出两条直线是平行的,观察所得到的结果与实际结果之间有明显的误差,能够使学生深深的体会到,仅凭观察和实际操作得出的结论是不可靠的,必须学习用更科学的方式来说明,由此引发学生探索的直线平行条件的需求,自然引入新课。这样引入,既符合学生已有的认知基础,又较好的激发了学生探索问题的欲望。第二环节:联系实际,积极探索活动内容:1引入实际问题:如课本彩图,装修工人正在向墙上钉木条。如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹角是多少度时,才能使木条a与木条b平行?学生根据

5、自己的生活经验自然会得到:木条a也与墙壁边缘垂直时,才能使木条a与木条b平行。在此基础上提出两个问题:问题1:实际问题中在判断两根木条平行时,借助了墙壁作为参照,你能将上述问题抽象为数学问题吗?试着画出图形,并结合图形说明。学生回答:如图,把墙壁看作直线c,直线b与直线c垂直时,只有当直线a也与直线c垂直时,才能得到直线a平行于直线b。1bac2acb问题2:1.图中的直线b与直线c不垂直,直线a应满足什么条件才能与直线b平行呢?请你利用教具亲自动手操作。做一做:利用纸条和图钉自己制作学具,如图,三根纸条相交成1,2,固定纸条b,c,转动纸条a, 在操作的过程中让学生观察2的变化以及它与1的关

6、系,你发现纸条a与纸条b的位置关系发生了什么变化?纸条a何时与纸条b平行?改变图中1的大小再试一试,与同学交流你的发现。引导学生发现,当图中的2满足与1相等时,纸条a与纸条b平行。再利用课件展示,加深学生的认识。2由1与2的位置关系引出对“三线八角”的认识和同位角的概念。如图,直线AB,CD被直线l所截,构成了八个角,具有1与2ACBDl12346758这样位置关系的角,可以看作是在被截直线的同一侧,在截线的同一旁,相对位置是相同的,我们把这样的角称为同位角。 问题1:图中还有其他的同位角吗? 问题2:这些角相等也可以得出两直线平行吗?3综上探索,引导学生归纳出两直线平行的条件:同位角相等,两

7、直线平行。活动目的:本环节共经历了三个过程。首先利用课本的实例,使学生认识到平行线在日常生活和生产中广泛存在,探索直线平行的条件是实际的需要,由实例中“木条与墙壁平行”这一特殊情况入手,学生很容易理解。通过问题1巧妙的将实际问题转化为数学问题,较好了建立的数学模型;又通过问题2实现了由特殊到一般的过渡,点击重点。设置了“转动纸条”的活动,让学生亲自动手操作,目的是让学生通过观察、想象、直观认识到“同位角相等,两直线平行”的结论。第二,再次引导学生将转动纸条的实际问题抽象为数学问题,画出“三线八角”的基本图形,并直观的认识同位角的概念,使概念的学习成为解决问题的需要,而没有孤立的处理这部分内容,

8、这样处理能使知识自然纳入学生的学习需求,符合可接受性原则。第三,在较好的处理了前两个环节后,探索得出同位角相等,两直线平行的结论也就水到渠成了。这样由浅入深,充分地让学生经历了解决问题的过程,较好的突出了重点,突破了难点。.ABFEDCGH第三环节:变式训练,熟练技能:活动内容:练习1 指出下面点阵中互相平行的线段,并说明理由123EFGHBCDA(点阵中相邻的四个点构成正方形)。练习2 如图,1=2=55, 3等于多少度?直线AB、CD平行吗?说明你的理由。ABP.议一议 2议一议1练习3 议一议:问题1:你还记得怎样用移动三角板的方法画两条平行线吗?你能用这种方法过已知直线AB外一点P画它

9、的平行线吗?请说出其中的道理。问题2:分别过点C、D画直线AB的平行线EF、GH, EF与GH有怎样的位置关系? 因为ab ,ac ,根据平行于同一条直线的两条直线互相平行,所以bc 过直线外一点有且只有一条直线与这条直线平行。平行于同一条直线的两条直线互相平行。你有什么发现?与同伴交流.结论:活动目的:通过形式不同的三个练习,从不同的角度帮助学生进一步加深对利用同位角相等判定两直线平行的认识,形成初步技能。练习1利用网格图呈现基本图形,较简单有趣;练习2难度略有加深,直接呈现三线八角的基本图形,引导学生,帮助学生进一步认识同位角,并判定直线平行;练习3是将上学期所学“推三角板画平行线”的方法

10、与本节课知识相联系,当时学习这种画法的时候,无法给学生说明这样画的道理,留下悬念,学习了本节的知识后,正好为此找到了理论依据。设计成议一议的形式也是为了使学生在实践中学会思考,再利用所得结论来解决新问题:如何过直线外一点画已知直线的平行线?这也是本节课学生要重点掌握的内容。第四环节:学以致用,步步提高活动内容:1ba , ca , 那么 ,理由: .第4题图第3题图第2题图第1题图2.如图如果1=2,那么哪两条直线平行?为什么?3.如图,AOC=APQ=CFE=46,可得到哪些平行线?为什么?4. 如图,直线EF与DCG的两边相交于A,B两点,C的同位角是 和 ,BAC的同位角是 ,EBG的同

11、位角是 .第五环节:拓展延伸,迁移运用1.带领学生研究课本48页“数学理解”栏目中的两个实际问题:问题1:你能用一张不规则的纸(如图)折出两条平行的直线吗?与同伴说说你的折法。ADEOCB问题2:如图(1)是一种画平行线的工具,在画平行线之前,工人师傅往往要先调整一下工具,如图2,然后画平行线,你能说明这种工具的用法和其中得道理吗?(图见教材)2如图,在屋架上要加一根横梁DE,已知B=32,要使DEBC,则ADE必须等于多少度?为什么?活动目的:本环节的三个问题难度较大,联系实际,要求学生具有较高的分析问题和解决问题的能力,设计的目的是进一步激发学生的探究兴趣,学会用所学知识解释和解决实际生活

12、中的问题,提高能力。问题1由于所给纸片是不规则的,给学生构建了探究、创造的空间,要想利用结论,必须构造出于同一条直线相交构成相等同位角的两条直线,方法多样,有较大的探索空间;问题2是进一步培养学生说理的能力,也可以进一步引导学生将实际问题抽象位几何图形,并结合图形说明道理;问题3是一个具有较复杂图形的实际问题,目的是训练学生的识图能力,只要善于从中提取出基本图形,问题就迎刃而解了。设计本环节对于整节课教学目标的实现也起着非常重要的作用,第一使学生对知识的理解与应用螺旋上升,达到较高要求;第二,整堂课的设计体现了实际理论实际的过程,帮助学生形成从实际问题中抽象出数学问题,得出结论,再用来解决实际

13、问题的学习数学的思路,这也符合新课程标准所要求的“实际问题建立模型解释、应用与拓展”思路。第五环节:总结反思,布置作业总结反思,问题1:本节课你认为自己解决的最好的问题是什么?问题2:本节课你有哪些收获?问题3:通过今天的学习,你想进一步探究的问题是什么?布置作业148页习题2.3知识技能。2补充练习:如图,是由两块相同的直角三角板拼成的,(1)请写出图中相等的角;(2)写出图中平行的线段,并说明理由。及时作业是巩固课堂学习知识的重要环节,由于课本提供练习较少,因此作适当的补充。由于对学生“说理”的训练应循序渐进,考虑到学生目前书写还有困难,所以练习较多采用填空、选择的形式,逐步过渡到由学生独立完成说理的全过程。三、 教学反思

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服