1、湖北省安陆市七年级数学7.1.1三角形的边教案 新人教版【教学目标】1、知识与技能、理解三角形的表示法,分类法以及三边存在的关系,发展空间观念。2、过程与方法:(1)经历探索三角形中三边关系的过程,认识三角形这个最简单,最基本的几何图形,提高推理能力。(2)培养学生数学分类讨论的思想。3、情感态度与价值观:(1)培养学生的推理能力,运用几何语言有条理的表达能力,体会三角形知识的应用价值。(2)通过师生共同活动,促进学生在学习活动中培养良好的情感,合作交流,主动参与的意识,在独立思考的同时能够认同他人。【重点】掌握三角形三边关系【难点】三角形三边关系的应用【课型】 新授课【学习方法】自学与小组合
2、作学习相结合的方法【学习过程】一、目标导入课件展示图片,学生欣赏并从中抽象出三角形。三角形是一种最常见的几何图形, 如古埃及金字塔,香港中银大厦,交通标志,等等,处处都有三角形的形象。 问题:你能举出日常生活中三角形的实际例子吗?二、自主学习(1):1.自学内容:教材第63页第410行文字.2.自学要求:学生理解边、角、顶点的意义而不是背其定义;让学生感受数学语言的逻辑性,严密性。三、交流展示(1):1:三角形定义:_2:怎样用几何符号表示你所画的三角形?什么是三角形的顶点、边、角?3、现实生活中,你看到一些形状不同的三角形,你能画出吗?不在一条直线上的三条线段首尾顺次相接组成的图形叫做三角形
3、。注意:三条线段必须不在一条直线上,首尾顺次相接。abc组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。三角形ABC用符号表示为ABC。三角形ABC的顶点C所对的边AB可用c 表示,顶点B所对的边AC可用b表示,顶点A所对的边BC可用a表示.四、自主学习(2):1.自学内容:课本63页第11行到64页探究上;2.自学要求:学生会对三角形分类;学生明白对于同一事物可采用几种不同的分类标准五、交流展示(2). 三角形可采用几种不同的分类标准?如何分类?.如何给你所画的这些形状各异的三角形分类?我们知道,三角形按角可分为锐角三角形、钝角三
4、角形、直角三角形,我们把锐角三角形、钝角三角形统称为斜三角形。按角分类: 三角形 直角三角形 斜三角形 锐角三角形 钝角三角形那么三角形按边如何进行分类呢?请你按“有几条边相等”将三角形分类。三边都相等的三角形叫做等边三角形;有两条边相等的三角形叫做等腰三角形;三边都不相等的三角形叫做不等边三角形。 腰腰底边顶角底角底角显然,等边三角形是特殊的等腰三角形。按边分类:三角形 不等边三角形 等腰三角形 底和腰不等的等腰三角形 等边三角形六、自主学习(3):1.自学内容:课本64页探究到例题上;2.自学要求:学生理解三角形三边之间的关系,能进行简单说理七、交流展示(3)探究:任意画一个ABC,假设有
5、一只小虫要从B点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?为什么?有两条路线:(1)从BC,(2)从BAC;不一样, AB+ACBC ;因为两点之间线段最短。同样地有 AC+BCAB AB+BCAC 由式子我们可以知道什么?1、三角形三边之间的关系定理:三角形的任意两边之和大于第三边.,理论依据是_.2、记住:三角形三边之间的关系定理的推论:三角形的两边之差小于第三边;3、下列长度的三条线段能否围成三角形?为什么? 2,4,7 6,12,6 7,8,134、现有两根木棒,它们的长分别为40cm和50cm,若要钉成一个三角形木架(不计接头),则在下列四根木棒中应选取(
6、) A10cm长的木棒 B40cm长的木棒 C90cm长的木棒 D100cm长的木棒5已知一个三角形的两边长分别是3cm和4cm,则第三边长x的取值范围是_若x是奇数,则x的值是_;这样的三角形有_个;若x是偶数,则x的值是_;这样的三角形又有_个八、自主学习(4):1.自学内容:课本64页例题;2.自学要求:让学生体会数学的严密性。1能否利用代数中方程思想解决几何问题。2能否用分类讨论方法解决问题。3求出三边后还需用三角形三边之间关系检验。例 用一条长为18的细绳围成一个等腰三角形。(1)如果腰长是底边的2倍,那么各边的长是多少?(2)能围成有一边长为4的等腰三角形吗?为什么?分析:(1)等
7、腰三角形三边的长是多少?若设底边长为x,则腰长是多少?(2)“边长为4”是什么意思?解:(1)设底边长为x,则腰长2 x。x+2x+2x=18解得x=3.6所以,三边长分别为3.6,7.2,7.2.(2)如果长为4的边为底边,设腰长为x,则4+2x=18解得x=7如果长为4的边为腰,设底边长为x,则24+x=18解得x=10因为4+410,出现两边的和小于第三边的情况,所以不能围成腰长是4的等腰三角形。由以上讨论可知,可以围成底边长是4的等腰三角形。九、交流展示(4)1、已知一个等腰三角形两边长是4cm和9cm,求它的周长?2、已知一个等腰三角形两边长是5cm和9cm,求它的周长?十、巩固练习
8、课本:65页练习十一、小结1、三角形定义:_2、三角形进行分类:3、三角形三边之间的关系定理:_,理论依据是_.三角形三边之间的关系定理的推论:_。十二、拓展与探究已知a、b、c为ABC的三边长,b、c满足(b-2)2+c-3=0,且a为方程x-4=2的解,求ABC的周长,判断ABC的形状十三、达标检测1下图中有几个三角形?用符号表示这些三角形2下列说法: (1)等边三角形是等腰三角形; (2)三角形按边分类可分为等腰三角形、等边三角形和不等边三角形; (3)三角形的两边之差大于第三边; (4)三角形按角分类应分为锐角三角形、直角三角形和钝角三角形 其中正确的有( ) A1个 B2个 C3个 D4个3下列长度的各组线段中,能组成三角形的是( ) A3cm,12cm,8cm B6cm,8cm,15cm C2.5cm,3cm,5cm D6.3cm,6.3cm,12.6cm4、已知等腰三角形的两边长分别是3和6,则它的周长等于( ) A12 B12或15 C15 D15或185、已知等腰三角形的一边长等于5,周长为16,求另一边长十四、布置作业:课本69页1、2、6、7。