1、有理数加法的运算律及运用教学目标:1.能运用加法运算律简化加法运算.2.理解加法运算律在加法运算中的作用,适当进行推理训练.教学重点:如何运用加法运算律简化运算.教学难点:灵活运用加法运算律.教与学互动设计:(一)情境创设,导入新课思考:在小学里,我们学过的加法运算有哪些运算律?它们的内容是什么?能否举一两个例子来?那这些加法运算律还适用于有理数范围吗?今天,我们一起来探究这个问题.(二)合作交流,解读探究计算:20+(-30)与(-30)+20两次得到的和相同吗?得出结论:20+(-30)=(-30)+20换几组数去试:得到加法交换律:a+b=(学生填).其实,学生在小学中就已经接触到运算律
2、,此时,可以让学生回忆在小学中除了学习了加法的交换律,还学习了加法的哪种运算律?(结合律)计算:(1)8+(-5)+(-4);(2)8+(-5)+(-4).得出结论:加法结合律:(a+b)+c=.【例1】计算:16+(-25)+24+(-35)【例2】课本P20例3说明:把互为相反数的一对数结合起来相加,可以使运算简化,这种方法是使用加法交换律和加法结合律.总结:在进行多个有理数相加时,在下列情况下一般可以用加法交换律和加法结合律简化运算:有些加数相加后可以得到整数时,可以先行相加;有相反数可以互相消去,和为0,可以先行相加;有许多正数和负数相加时,可以先把符号相同的数相加,即正数和正数相加,
3、负数和负数相加,再把一个正数和一个负数相加.(三)应用迁移,巩固提高【例3】 利用有理数的加法运算律计算,使运算简便.(1)(+9)+(-7)+(+10)+(-3)+(-9)(2)(+0.36)+(-7.4)+(+0.03)+(-0.6)+(+0.64)(3)(+1)+(-2)+(+3)+(-4)+(+2003)+(-2004)【例4】某出租司机某天下午营运全是在东西走向的人民大道上进行的,如果规定向东为正,向西为负,他这天下午行车里程如下:(单位:千米)+15,+14,-3,-11,+10,-12,+4,-15,+16,-18.(1)他将最后一名乘客送到目的地,该司机与下午出发点的距离是多少
4、千米?(2)若汽车耗油量为a公升/千米,这天下午汽车共耗油多少公升?(四)总结反思,拓展升华本节课我们探索了有理数的加法交换律和结合律.灵活运用加法的运算律会使运算简便.一般情况下,我们将互为相反数的数相结合,同分母的分数相结合,能凑整数的数相结合,正数负数分别相加,从而使计算简便.(五)课堂跟踪反馈夯实基础1.运用加法的运算律计算(+6)+(-18)+(+4)+(-6.8)+18+(-3.2)最适当的是()A.(+6)+(+4)+18+(-18)+(-6.8)+(-3.2)B.(+6)+(-6.8)+(+4)+(-18)+18+(-3.2)C.(+6)+(-18)+(+4)+(-6.8)+1
5、8+(-3.2)D.(+6)+(+4)+(-3.2)+(-6.8)+(-18)+18)2.计算:(-2)+4+(-6)+8+(-98)+100.提升能力3.小李到银行共办理了四笔业务,第一笔存入了120元,第二笔支取了85元,第三笔支取了70元,第四笔存入了130元.如果将这四笔业务合并为一笔,请你替他策划一下这一笔业务该怎样做?4.某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负.某天自A地出发到收工时所走路线(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,+5.(1)问收工时距A地多远?(2)若每千米路程耗油0.2升,问从A地出发到收工共耗油多少升?学生
6、普遍能直观地看出4比-3高7,进一步地假定某地一天的气温是-34,那么温差(最高气温减最低气温,单位)如何用算式表示?按照刚才观察到的结果,可知4-(-3)=7,而4+(+3)=7,由可知:4-(-3)=4+(+3),上述结论的获得应放手让学生回答.(二)动手实践,发现新知观察、探究、讨论:从式能看出减-3相当于加哪个数吗?结论:减去-3等于加上-3的相反数+3.(三)类比探究,总结提高如果将4换成-1,还有类似于上述的结论吗?先让学生直观观察,然后教师再利用“减法是与加法相反的运算”引导学生换一个角度去验算.计算(-1)-(-3)就是要求一个数x,使x与-3相加得-1,因为2与-3相加得-1
7、,所以x应是2,即(-1)-(-3)=2,又因为(-1)+(+3)=2,由有(-1)-(-3)=-1+(+3),即上述结论依然成立.试一试:如果把4换成0、-5,用上面的方法考虑0-(-3),(-5)-(-3),这些数减-3的结果与它加上+3的结果相同吗?让学生利用“减法是加法的相反运算”得出结果,再与加法算式的结果进行比较,从而得出这些数减-3的结果与它们加+3的结果相同的结论.再试:把减数-3换成正数,结果又如何呢?计算9-8与9+(-8);15-7与15+(-7)从中又能有新发现吗?让学生通过计算总结如下结论:减去一个正数等于加上这个正数的相反数.归纳:由上述实验可发现,有理数的减法可以转化为加法来进行.减法法则:减去一个数,等于加上这个数的相反数.用字母表示:a-b=a+(-b).(在上述实验中,逐步渗透了一种重要的数学思想方法转化)(四)例题分析,运用法则【例】计算:(1)(-3)-(-5);(2)0-7;(3)7.2-(-4.8);(4)-3-5.(五)总结巩固,初步应用总结这节课我们学习了哪些数学知识和数学思想?你能说一说吗?教师引导学生回忆本节课所学内容,学生回忆交流,教师和学生一起补充完善,使学生更加明晰所学的知识.