1、_ 精品资料 高中数学高中数学 必修必修 1 1 知识点知识点 第一章第一章 集合与函数概念集合与函数概念 【1.1.11.1.1】集合的含义与表示】集合的含义与表示 (1)集合的概念 集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法 N表示自然数集,N或N表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集.(3)集合与元素间的关系 对象a与集合M的关系是a M,或者a M,两者必居其一.(4)集合的表示法 自然语言法:用文字叙述的形式来描述集合.列举法:把集合中的元素一一列举出来,写在大括号内表示集合.描述法:x|x具有的性质,其中x为集合的代表元素.图示法:用数轴或韦恩
2、图来表示集合.(5)集合的分类 含有有限个元素的集合叫做有限集.含有无限个元素的集合叫做无限集.不含有任何元素的集合叫做空集().【1.1.21.1.2】集合间的基本关系】集合间的基本关系 (6)子集、真子集、集合相等 名称 记号 意义 性质 示意图 _ 精品资料 子集 BA(或)AB A 中的任一元素都属于 B(1)AA(2)A(3)若BA且BC,则A C(4)若BA且BA,则A B A(B)或BA 真子集 AB(或 BA)BA,且 B 中至少有一元素不属于 A(1)A(A 为非空子集)(2)若A B且B C,则A C BA 集合 相等 A B A 中的任一元素都属于 B,B 中的任一元素都
3、属于 A(1)AB(2)BA A(B)(7)已知集合A有(1)nn个元素,则它有2n个子集,它有21n个真子集,它有21n个非空子集,它有22n非空真子集.【1.1.31.1.3】集合的基本运算】集合的基本运算(8)交集、并集、补集 名称 记号 意义 性质 示意图 交集 A B|,x x A且x B(1)A A A(2)A (3)A BA A BB BA 并集 A B|,x x A或x B(1)A A A(2)AA(3)A BA A BB BA _ 精品资料 补集 UA|,x x Ux A且 1()UAA 2()UAAU 【补充知识】【补充知识】含绝对值的不等式与一元二次不等式的解法含绝对值的
4、不等式与一元二次不等式的解法 (1)含绝对值的不等式的解法 不等式 解集|(0)xa a|xa x a|(0)xa a|x xa或x a|,|(0)ax b c ax bcc 把ax b看 成 一 个 整 体,化 成|xa,|(0)xa a型不等式来求解(2)一元二次不等式的解法 判别式 24bac 0 0 0 二次函数2(0)y axbx c a的图象 O 一元二次方程20(0)axbx ca 的根 21,242bbacxa(其中12)xx 122bxxa 无实根 20(0)axbx ca 的解集 1|x x x或2xx|x2bxa R 20(0)axbx ca 的解集 12|x xx x
5、()()()UUUA BAB痧?()()()UUUA BAB痧?_ 精品资料 1.21.2函数及其表示函数及其表示【1.2.11.2.1】函数的概念】函数的概念(1)函数的概念 设A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中任何一个数x,在集合B中都有唯一确定的数()f x和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的一个函数,记作:f AB 函数的三要素:定义域、值域和对应法则 只有定义域相同,且对应法则也相同的两个函数才是同一函数(2)区间的概念及表示法 设,a b是两个实数,且a b,满足a x b 的实数x的集合叫做闭区间,记做,a b
6、;满足a x b 的实数x的集合叫做开区间,记做(,)a b;满足a x b,或a x b 的实数x的集合叫做半开半闭区间,分别记做,)a b,(,a b;满足,x a x a x b x b的实数x的集合分别记做,),(,),(,(,)aabb 注意:注意:对于集合|x a x b 与区间(,)a b,前者a可以大于或等于b,而后者必须 a b(3)求函数的定义域时,一般遵循以下原则:()f x是整式时,定义域是全体实数()f x是分式函数时,定义域是使分母不为零的一切实数()f x是偶次根式时,定义域是使被开方式为非负值时的实数的集合 对数函数的真数大于零,当对数或指数函数的底数中含变量时
7、,底数须大于零且不等于 1 tanyx中,()2x kk Z 零(负)指数幂的底数不能为零 _ 精品资料 若()f x是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集 对于求复合函数定义域问题,一般步骤是:若已知()f x的定义域为,a b,其复合函数()f g x的定义域应由不等式()a g xb解出 对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论 由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义(4)求函数的值域或最值 求函数最值的常用方法和求函数值域的方法基本上是相同的事实上,如果在函数的值域中
8、存在一个最小(大)数,这个数就是函数的最小(大)值因此求函数的最值与值域,其实质是相同的,只是提问的角度不同求函数值域与最值的常用方法:观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值 配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值值域或最值 判别式法:若函数()yf x可以化成一个系数含有y的关于x的二次方程2()()()0a y xb y x c y,则在()0a y 时,由于,x y为实数,故必须有2()4()()0b ya y c y,从
9、而确定函数的值域或最值 不等式法:利用基本不等式确定函数的值域或最值 换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题 反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值 数形结合法:利用函数图象或几何方法确定函数的值域或最值 函数的单调性法 _ 精品资料 【1.2.21.2.2】函数的表示法】函数的表示法(5)函数的表示方法 表示函数的方法,常用的有解析法、列表法、图象法三种 解析法:就是用数学表达式表示两个变量之间的对应关系列表法:就是列出表格来表示两个变量之间的对应关系图象法:就是用图象表示两个变量之间的对应
10、关系(6)映射的概念 设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的映射,记作:f AB 给定一个集合A到集合B的映射,且,a Ab B如果元素a和元素b对应,那么我们把元素b叫做元素a的象,元素a叫做元素b的原象 1.31.3函数的基本性质函数的基本性质【1.3.11.3.1】单调性与最大(小)值】单调性与最大(小)值(1)函数的单调性 定义及判定方法 函数的 性 质 定义 图象 判定方法 _ 精品资料 y x o 函数的 单调性 如果对于属于定义域I内某个区间上的
11、任意两个自变量的值 x1、x2,当 x x1 1 x x2 2时,都有f(xf(x 1 1)f(x)f(x 2 2),那么就说 f(x)在这个区间上是增函数增函数 x1x2y=f(X)xyf(x)1f(x)2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象上升为增)(4)利用复合函数 如果对于属于定义域I内某个区间上的任意两个自变量的值 x1、x2,当 x x1 1 xf(x)f(x 2 2),那么就说 f(x)在这个区间上是减函数减函数 y=f(X)yxoxx2f(x)f(x)211(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象下降
12、为减)(4)利用复合函数 在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数增函数,减函数减去一个增函数为减函数 对 于 复 合 函 数 对 于 复 合 函 数()yf g x,令,令()ug x,若,若()yf u为 增,为 增,()ug x为 增,则为 增,则()yf g x为增;若为增;若()yf u为减,为减,()ug x为减,则为减,则()yf g x为增;若为增;若()yf u为为增,增,()ug x为减,则为减,则()yf
13、g x为减;若为减;若()yf u为减,为减,()ug x为增,则为增,则()yf g x为减为减 (2)打“”函数()(0)af xxax 的图象与性质()f x分别在(,a、,)a 上为增函数,分别在,0)a、_ 精品资料(0,a上为减函数(3)最大(小)值定义 一般地,设函数()yf x的定义域为I,如果存在实数M满足:(1)对于任意的x I,都有()f xM;(2)存在0 xI,使得0()f xM那么,我们称M是函数()f x 的最大值,记作max()fxM 一般地,设函数()yf x的定义域为I,如果存在实数m满足:(1)对于任意的x I,都有()f xm;(2)存在0 xI,使得0
14、()f xm那么,我们称m是函数()f x的最小值,记作max()fxm【1.3.21.3.2】奇偶性】奇偶性(4)函数的奇偶性 定义及判定方法 函数的 性 质 定义 图象 判定方法 函数的 奇偶性 如果对于函数f(x)定义域内任意一个 x,都有 f(f(x)=x)=f(x)f(x),那么函数 f(x)叫做奇函数奇函数 (1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)_ 精品资料 如果对于函数f(x)定义域内任意一个 x,都有 f(f(x)=x)=f(x)f(x),那么函数 f(x)叫做偶函数偶函数 (1)利用定义(要先判断定义域是否关于原点对称)(2)利用图
15、象(图象关于 y 轴对称)若函数()f x为奇函数,且在0 x处有定义,则(0)0f 奇函数在y轴两侧相对称的区间增减性相同,偶函数在y轴两侧相对称的区间增减性相反 在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数 补充知识函数的图象补充知识函数的图象 (1)作图 利用描点法作图:确定函数的定义域;化解函数解析式;讨论函数的性质(奇偶性、单调性);画出函数的图象 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函
16、数的图象 平移变换 0,0,|()()hhhhyf xyf x h 左移 个单位右移|个单位0,0,|()()kkkkyf xyf xk 上移 个单位下移|个单位 伸缩变换 01,1,()()yf xyfx 伸缩 _ 精品资料 01,1,()()AAyf xyAf x 缩伸 对称变换()()xyf xyf x 轴 ()()yyf xyfx 轴()()yf xyfx 原点 1()()y xyf xyfx 直线()(|)yyyyf xyf x 去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|xxyf xyf x 保留轴上方图象将轴下方图象翻折上去(2)识图 对于给定函数的图象,要能从
17、图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系(3)用图 函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具要重视数形结合解题的思想方法 第二章第二章 基本初等函数基本初等函数()2.12.1指数函数指数函数 【2.1.12.1.1】指数与指数幂的运算】指数与指数幂的运算 (1)根式的概念 如果,1nxa a R x Rn,且n N,那么x叫做a的n次方根当n是奇数时,a的n次方根用符号na表示;当n是偶数时,正数a的正的n次方根用符号na表示,负的n次方根用
18、符号na表示;0 的n次方根是 0;负数a没有n次方根 式子na叫做根式,这里n叫做根指数,a叫做被开方数当n为奇数时,a为任意实数;当n为偶数时,0a 根 式 的 性 质:()nnaa;当n为 奇 数 时,nnaa;当n为 偶 数 时,_ 精品资料 (0)|(0)nnaaaaaa(2)分数指数幂的概念 正数的正分数指数幂的意义是:(0,mnmnaa amn N且1)n0 的正分数指数幂等于 0 正数的负分数指数幂的意义是:11()()(0,mmmnnnaamn Naa且1)n0的负分数指数幂没有意义 注意口诀:注意口诀:底数取倒数,指数取相反数(3)分数指数幂的运算性质(0,)rsr sa
19、aaar s R ()(0,)r srsaa ar s R()(0,0,)rr rabab abr R【2.1.22.1.2】指数函数及其性质】指数函数及其性质 (4)指数函数 函数名称 指数函数 定义 函数(0 xy a a且1)a叫做指数函数 图象 1a 01a xay xy(0,1)O1y xay xy(0,1)O1y _ 精品资料 定义域 R 值域(0,)过定点 图象过定点(0,1),即当0 x时,1y 奇偶性 非奇非偶 单调性 在R上是增函数 在R上是减函数 函数值的 变化情况 1(0)1(0)1(0)xxxaxaxax 1(0)1(0)1(0)xxxaxaxax a变化对 图象的影
20、响 在第一象限内,a越大图象越高;在第二象限内,a越大图象越低 2.22.2对数函数对数函数【2.2.12.2.1】对数与对数运算】对数与对数运算(1)对数的定义 _ 精品资料 若(0,1)xaN aa且,则x叫做以a为底N的对数,记作logaxN,其中a叫做底数,N叫做真数 负数和零没有对数 对数式与指数式的互化:log(0,1,0)xaxNaN aaN(2)几个重要的对数恒等式 log 1 0a,log1aa,logbaab(3)常用对数与自然对数 常用对数:lgN,即10log N;自然对数:lnN,即logeN(其中2.71828e)(4)对数的运算性质 如果0,1,0,0aaMN,那
21、么 加法:logloglog()aaaMNMN 减法:logloglogaaaMMNN 数乘:loglog()naanMM n R logaNaN loglog(0,)bnaanMM bn Rb 换底公式:loglog(0,1)logbabNNbba且 【2.2.22.2.2】对数函数及其性质】对数函数及其性质 (5)对数函数 函数 名称 对数函数 定义 函数log(0ayx a且1)a叫做对数函数 图象 1a 01a _ 精品资料 定义域(0,)值域 R 过定点 图象过定点(1,0),即当1x时,0y 奇偶性 非奇非偶 单调性 在(0,)上是增函数 在(0,)上是减函数 函数值的 变化情况
22、log0(1)log0(1)log0(01)aaaxxxxxx log0(1)log0(1)log0(01)aaaxxxxxx a变化对 图象的影响 在第一象限内,a越大图象越靠低;在第四象限内,a越大图象越靠高(6)反函数的概念 设函数()yf x的定义域为A,值域为C,从式子()yf x中解出x,得式子()xy 如果对于y在C中的任何一个值,通过式子()xy,x在A中都有唯一确定的值和它对应,那么式子()xy表示x是y的函数,函数()xy叫做函数()yf x的反函数,记作1()xfy,xyO(1,0)1x logayx xyO(1,0)1x logayx _ 精品资料 习惯上改写成1()y
23、fx(7)反函数的求法 确定反函数的定义域,即原函数的值域;从原函数式()yf x中反解出1()xfy;将1()xfy改写成1()yfx,并注明反函数的定义域(8)反函数的性质 原函数()yf x与反函数1()yfx的图象关于直线yx对称 函数()yf x的定义域、值域分别是其反函数1()yfx的值域、定义域 若(,)P a b在原函数()yf x的图象上,则(,)P b a在反函数1()yfx的图象上 一般地,函数()yf x要有反函数则它必须为单调函数 2.32.3幂函数幂函数(1)幂函数的定义 一般地,函数yx叫做幂函数,其中x为自变量,是常数(2)幂函数的图象 _ 精品资料 (3)幂函
24、数的性质 图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象幂函数是偶函数时,图象分布在第一、二象限(图象关于y轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限 过定点:所有的幂函数在(0,)都有定义,并且图象都通过点(1,1)单调性:如果0,则幂函数的图象过原点,并且在0,)上为增函数如果0,则幂函数的图象在(0,)上为减函数,在第一象限内,图象无限接近x轴与y轴 奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数当qp(其中,pq互质,p和q Z),若p为奇数q为奇数时,则qpyx是奇函数,若p为奇数q为偶数时,则
25、qpyx是偶函数,若p为偶数q为奇数时,则qpyx是非奇非偶函数 图象特征:幂函数,(0,)y x x,当1时,若01x,其图象在直线yx下方,若1x,其图象在直线yx上方,当1时,若01x,其图象在直线yx上方,若1x,其图象在直线yx下方 补充知识二次函数补充知识二次函数 _ 精品资料(1)二次函数解析式的三种形式 一般式:2()(0)f xaxbx c a顶点式:2()()(0)f xa x hk a两根式:12()()()(0)f xa x x x x a(2)求二次函数解析式的方法 已知三个点坐标时,宜用一般式 已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式
26、若已知抛物线与x轴有两个交点,且横线坐标已知时,选用两根式求()f x更方便(3)二次函数图象的性质 二次函数2()(0)f xaxbx c a的图象是一条抛物线,对称轴方程为,2bxa顶点坐标是24(,)24bac baa 当0a时,抛物线开口向上,函数在(,2ba上递减,在,)2ba上递增,当2bxa时,2min4()4ac bfxa;当0a时,抛物线开口向下,函数在(,2ba上递增,在,)2ba上递减,当2bxa时,2max4()4ac bfxa 二次函数2()(0)f xaxbx c a当240bac时,图象与x轴有两个交点11221212(,0),(,0),|M xM xMMxxa(
27、4)一元二次方程20(0)axbx ca 根的分布 一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布 设一元二次方程20(0)axbx ca 的两实根为12,x x,且12xx令2()f xaxbx c,从以下四个方面来分析此类问题:开口方向:a 对称轴位置:2bxa _ 精品资料 判别式:端点函数值符号 kx1x2 xy1x2x0aOabx20)(kfk xy1x2xOabx2k0a0)(kf x1x2k x
28、y1x2x0aOabx2k0)(kf xy1x2xOabx2k0a0)(kf x1kx2 af(k)0 0)(kfxy1x2x0aOk xy1x2xOk0a0)(kf k1x1x2k2 _ 精品资料 xy1x2x0aO1k2k0)(1kf0)(2kfabx2 xy1x2xO0a1k2k0)(1kf0)(2kfabx2 有且仅有一个根x1(或x2)满足k1x1(或x2)k2 f(k1)f(k2)0,并同时考虑f(k1)=0或f(k2)=0 这两种情况是否也符合 xy1x2x0aO1k2k0)(1kf0)(2kf xy1x2xO0a1k2k0)(1kf0)(2kf k1x1k2p1x2p2 此结论
29、可直接由推出 (5)二次函数2()(0)f xaxbx c a在闭区间,p q上的最值 设()f x在区间,p q上的最大值为最大值为M,最小值为,最小值为m,令01()2xp q()当0a时(开口向上)若2bpa,则()mf p 若2bpqa,则()2bmfa 若2bqa,则()mf q ()2bfa ()2bfa ()2bfa_ 精品资料 若02bxa,则()Mf q 02bxa,则()Mf p ()当0a时(开口向下)若2bpa,则()Mf p 若2bpqa,则()2bMfa 若2bqa,则()Mf q 若02bxa,则()mf q 02bxa,则()mf p ()2bfa0 x ()2
30、bfa0 x ()2bfa ()2bfa ()2bfa0 x ()2bfa ()2bfa0 x_ 精品资料 第三章第三章 函数的应用函数的应用 一、方程的根与函数的零点 1、函数零点的概念:对于函数)(Dxxfy,把使0)(xf成立的实数x叫做函数)(Dxxfy的零点。2、函数零点的意义:函数)(xfy的零点就是方程0)(xf实数根,亦即函数)(xfy的图象与x轴交点的横坐标。即:方程0)(xf有实数根函数)(xfy的图象与x轴有交点函数)(xfy有零点 3、函数零点的求法:求函数)(xfy的零点:1(代数法)求方程0)(xf的实数根;2(几何法)对于不能用求根公式的方程,可以将它与函数)(x
31、fy的图象联系起来,并利用函数的性质找出零点 4、二次函数的零点:二次函数)0(2acbxaxy),方程02cbxax有两不等实根,二次函数的图象与x轴有两个交点,二次函数有两个零点),方程02cbxax有两相等实根(二重根),二次函数的图象与x轴有一个交点,二次函数有一个二重零点或二阶零点),方程02cbxax无实根,二次函数的图象与x轴无交点,二次函数无零点 高中数学高中数学 必修必修 2 2 知识点知识点 第一章第一章 空间几何体空间几何体 1.11.1 柱、锥、台、球的结构特征柱、锥、台、球的结构特征 1.21.2 空间几何体的三视图和直观空间几何体的三视图和直观图图 1 三视图:正视
32、图:从前往后 侧视图:从左往右 俯视图:从上往下 _ 精品资料 2 画三视图的原则:长对齐、高对齐、宽相等 3 直观图:斜二测画法 4 斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于 y 轴的线长度变半,平行于 x,z 轴的线长度不变;(3).画法要写好。5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图 1.3 1.3 空间几何体的表面积与体积空间几何体的表面积与体积 (一)空间几何体的表面积 1 棱柱、棱锥的表面积:各个面面积之和 2 圆柱的表面积 3 圆锥的表面积2rrlS 4 圆台的表面积22RRlrrlS 5 球的表面积24 R
33、S(二)空间几何体的体积 1 柱体的体积 hSV底 2 锥体的体积 hSV底31 3 台体的体积 hSSSSV)31下下上上(4 球体的体积 334RV 第二章第二章 直线与平面的位置关系直线与平面的位置关系 2.12.1 空间点、直线、平面之间的位置关系空间点、直线、平面之间的位置关系 2.1.1 1 平面含义:平面是无限延展的 2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成 450,且横边画成邻边的 2 倍长(如222rrlSD C B A _ 精品资料 图)(2)平面通常用希腊字母、等表示,如平面、平面等,也可以用表示平面的平行四边形的四个顶点或者相
34、对的两个顶点的大写字母来表示,如平面 AC、平面 ABCD 等。3 三个公理:(1)公理 1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为 AL BL =L A B 公理 1 作用:判断直线是否在平面内(2)公理 2:过不在一条直线上的三点,有且只有一个平面。符号表示为:A、B、C 三点不共线=有且只有一个平面,使 A、B、C。公理 2 作用:确定一个平面的依据。(3)公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。符号表示为:P=L,且 PL 公理 3 作用:判定两个平面是否相交的依据 2.1.2 2.1.2 空间中直线与直线之间的位
35、置关系空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;L A C B A P L 共面直线 _ 精品资料 异面直线:不同在任何一个平面内,没有公共点。2 公理 4:平行于同一条直线的两条直线互相平行。符号表示为:设 a、b、c 是三条直线 ab cb 强调:公理 4 实质上是说平行具有传递性,在平面、空间这个性质都适用。公理 4 作用:判断空间两条直线平行的依据。3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 4 注意点:a与 b所成的角的大小只由 a、b 的相互位置来确定,
36、与O的选择无关,为简便,点O一般取在两直线中的一条上;两条异面直线所成的角(0,);当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作 ab;两条直线互相垂直,有共面垂直与异面垂直两种情形;计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。2.1.32.1.3 2.1.4 2.1.4 空间中直线与平面、平面与平面之间的位置关系空间中直线与平面、平面与平面之间的位置关系 1、直线与平面有三种位置关系:(1)直线在平面内 有无数个公共点(2)直线与平面相交 有且只有一个公共点(3)直线在平面平行 没有公共点 指出:直线与平面相交或平行的情况统称为直线在平面外,可用 a
37、 来表示=ac 2_ 精品资料 a a=A a 2 2.2.2.直线、平面平行的判定及其性质直线、平面平行的判定及其性质 2.2.1 2.2.1 直线与平面直线与平面平行的判定平行的判定 1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。简记为:线线平行,则线面平行。符号表示:a b =a ab 2.2.2 2.2.2 平面与平面平行的判定平面与平面平行的判定 1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。符号表示:a b ab=P a b 2、判断两平面平行的方法有三种:_ 精品资料(1)用定义;(2)判定定理
38、;(3)垂直于同一条直线的两个平面平行。2.2.3 2.2.3 2.2.42.2.4 直线与平面、平面与平面平行的性质直线与平面、平面与平面平行的性质 1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。简记为:线面平行则线线平行。符号表示:a a ab=b 作用:利用该定理可解决直线间的平行问题。2、定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。符号表示:=a ab =b 作用:可以由平面与平面平行得出直线与直线平行 2.3 直线、平面垂直的判定及其性质 2.3.12.3.1 直线与平面垂直的判定直线与平面垂直的判定 1、定义 如果直线 L 与平
39、面内的任意一条直线都垂直,我们就说直线 L 与平面互相垂直,记作 L,直线 L叫做平面的垂线,平面叫做直线 L 的垂面。如图,直线与平面垂直时,它们唯一公共点 P 叫做垂足。L _ 精品资料 p 2、判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。2.3.22.3.2 平面与平面垂直的判定平面与平面垂直的判定 1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形 A 梭
40、l B 2、二面角的记法:二面角-l-或-AB-3、两个平面互相垂直的判定定理:一个平面过另一一个平面过另一个平面的垂线,则这两个平面垂直。个平面的垂线,则这两个平面垂直。2 2.3.33.3 2 2.3.43.4 直线与平面直线与平面、平面与平面垂直的性质平面与平面垂直的性质 1、定理:垂直于同一个平面的两条直线平行。2 性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。本章知识结构框图本章知识结构框图 平面(公理 1、公理 2、公理 3、公理 4)空间直线、平面的位置关系 平面与平面的位置关系 直线与平面的位置关系 _ 精品资料 第三章第三章 直线与方程直线与方程 3.
41、13.1 直线的倾斜角和斜率直线的倾斜角和斜率 3.13.1 倾斜角和斜率倾斜角和斜率 1、直线的倾斜角的概念:当直线 l 与 x 轴相交时,取 x 轴作为基准,x 轴正向与直线 l 向上方向之间所成的角叫做直线 l 的倾斜角.特别地,当直线 l 与 x 轴平行或重合时,规定=0.2、倾斜角的取值范围:0180.当直线 l 与 x 轴垂直时,=90.3、直线的斜率:一条直线的倾斜角(90)的正切值叫做这条直线的斜率,斜率常用小写字母 k 表示,也就是 k=tan 当直线 l 与 x 轴平行或重合时,=0,k=tan0=0;当直线 l 与 x 轴垂直时,=90,k 不存在.由此可知,一条直线 l
42、 的倾斜角一定存在,但是斜率 k 不一定存在.4、直线的斜率公式:给定两点 P1(x1,y1),P2(x2,y2),x1x2,用两点的坐标来表示直线 P1P2 的斜率:斜率公式斜率公式:k=y2:k=y2-y1/x2y1/x2-x1 x1 3.1.23.1.2 两条直线的平行与垂直两条直线的平行与垂直 1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即 注意:上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立即如果 k1=k2,那么一定有 L1L2 2、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互
43、为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即 3.2.1 3.2.1 直线的点斜式方程直线的点斜式方程 1、直线的点斜式点斜式方程:直线l经过点),(000yxP,且斜率为k )(00 xxkyy 2、直线的斜截式斜截式方程:已知直线l的斜率为k,且与y轴的交点为),0(b bkxy _ 精品资料 221 22221PPxxyy3.2.2 3.2.2 直线的两点式方程直线的两点式方程 1、直 线 的 两 点 式 方 程:已 知 两 点),(),(222211yxPxxP其 中),(2121yyxx y y-y1/yy1/y-y2=xy2=x-x1/xx1/x-x2x2 2、直
44、线的截距式方程:已知直线l与x轴的交点为 A)0,(a,与y轴的交点为 B),0(b,其中0,0 ba 3.2.3 3.2.3 直直线的一般式方程线的一般式方程 1、直线的一般 式 方 程:关 于yx,的 二 元 一 次 方 程0CByAx(A,B 不同时为 0)2、各种直线方程之间的互化。3.33.3 直线的交点坐标与距离公式直线的交点坐标与距离公式 3.3.13.3.1 两直线的交点坐标两直线的交点坐标 1、给出例题:两直线交点坐标 L1:3x+4y-2=0 L1:2x+y+2=0 解:解方程组 34202220 xyxy 得 x=-2,y=2 所以 L1 与 L2 的交点坐标为 M(-2
45、,2)3.3.23.3.2 两点间距离两点间距离 两点间的距离公式 3.3.33.3.3 点到直线的距离公式点到直线的距离公式 1点到直线距离公式:点),(00yxP到直线0:CByAxl的距离为:2200BACByAxd 2 2、两平行线间的距离公式:已知两条平行线直线1l和2l的一般式方程为1l:01CByAx,2l:02CByAx,则1l与2l的距离为2221BACCd _ 精品资料 第四章第四章 圆与方程圆与方程 4.1.1 4.1.1 圆的标准方程圆的标准方程 1、圆的标准方程:222()()x ay br 圆心为 A(a,b),半径为 r 的圆的方程 2、点00(,)M x y与圆
46、222()()x ay br的关系的判断方法:(1)2200()()xayb2r,点在圆外 (2)2200()()xayb=2r,点在圆上(3)2200()()xayb2r,点在圆内 4.1.2 4.1.2 圆的一般方程圆的一般方程 1、圆的一般方程:022FEyDxyx 2、圆的一般方程的特点:(1)x2 和 y2 的系数相同,不等于 0 没有 xy 这样的二次项 (2)圆的一般方程中有三个特定的系数 D、E、F,因之只要求出这三个系数,圆的方程就确定了 (3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。4.2.1
47、 4.2.1 圆与圆的位置关系圆与圆的位置关系 1、用点到直线的距离来判断直线与圆的位置关系 设直线l:0cbyax,圆C:022FEyDxyx,圆的半径为r,圆心)2,2(ED到直线的距离为d,则判别直线与圆的位置关系的依据有以下几点:(1)当rd时,直线l与圆C相离;(2)当rd时,直线l与圆C相切;(3)当rd时,直线l与圆C相交;_ 精品资料 4.2.2 4.2.2 圆与圆的位置关系圆与圆的位置关系 两圆的位置关系 设两圆的连心线长为l,则判别圆与圆的位置关系的依据有以下几点:(1)当21rrl时,圆1C与圆2C相离;(2)当21rrl时,圆1C与圆2C外切;(3)当|21rr21rr
48、l时,圆1C与圆2C相交;(4)当|21rrl时,圆1C与圆2C内切;(5)当|21rrl时,圆1C与圆2C内含;4.2.3 4.2.3 直线与圆的方程的应用直线与圆的方程的应用 1、利用平面直角坐标系解决直线与圆的位置关系;2、过程与方法 用坐标法解决几何问题的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:将代数运算结果“翻译”成几何结论 4.3.14.3.1 空间直角坐标系空间直角坐标系 1、点 M 对应着唯一确定的有序实数组),(zyx,x、y、z分别是 P、Q、R 在x、y、z轴上的坐
49、标 2、有序实数组),(zyx,对应着空间直角坐标系中的一点 3、空间中任意点 M 的坐标都可以用有序实数组),(zyx来表示,该数组叫做点 M 在此空间直角坐标系中的坐标,记 M),(zyx,x叫做点 M 的横坐标,y叫做点 M 的纵坐标,z叫做点 M 的竖坐标。4.3.24.3.2 空间两点间的距离公空间两点间的距离公式式 OyxMMRPQOyzxMP1P2NM1N2N1M2H_ 精品资料 1、空间中任意一点),(1111zyxP到点),(2222zyxP之间的距离公式 22122122121)()()(zzyyxxPP _ 精品资料 高中数学高中数学 必修必修 3 3 知识点知识点 第一
50、章第一章 算法初步算法初步 1.1.11.1.1 算法的概念算法的概念 1、算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2.算法的特点:(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成