1、7.2.1二元一次方程组的解法-代入法(1) 教学目的 1使学生通过探索,逐步发现解方程组的基本思想是“消元”,化二元次方程组为一元一次方程。 2使学生了解“代人消元法”,并掌握直接代入消元法。 3通过代入消元,使学生初步理解把“未知”转化为“已知”,和复杂问题转化为简单问题的思想方法。 重点、难点 1重点;用代入法把二元一次方程组转化为一元一次方程。 2难点:用代入法求出一个未知数值后,把它代入哪个方程求另一个未知数值较简便。 教学过程 一、复习 1什么叫二元一次方程,二元一次方程组,二元一次方程组的解? 2把3x+y7改写成用x的代数式表示y的形式。 二、新授 回顾上一节课的问题2。 在问
2、题2中,如果设应拆除旧校舍xm2,建新校舍ym2,那么根据 题意可列出方程组。 y-x=2000030% y=4x 怎样求这个二元一次方程组的解呢? 方程表明,可以把y看作4x,因此,方程中的y也可以看着 4x,即将代人(得到一元一次方程,实际上此方程就是设应拆除旧校舍xm2,所列的一元一次方程)。 这样就二元转化为一元,把“未知”转化为“已知”。你能用同样的方法来解问题1中的二元一次方程组吗?让学生自己概括上面解法的思路,然后试着解方程组。对有困难的同学,教师加以引导。并总结出解方程的步骤。 1. 选取一个方程,将它写成用一个未知数表示另一个未知数,记作方程。 2把代人另一个方程,得一元一次方程。 3解这个一元一次方程,得一个未知数的值。 4把这个未知数的值代人,求出另一个未知数值,从而得到方程组的解。 以上解法是通过“代人”消去一个未知数,将方程组转化为一元一次方程来解的,这种解法叫做代人消元法,简称代入法。 三、巩固练习 教科书第29页,练习。 四、小结 1解二元一次方程组的思路。 2掌握代入消元法解二元一次方程组的一般步骤。 五、作业