收藏 分销(赏)

下扬子地区大隆组页岩孔隙发育特征及主控因素.pdf

上传人:自信****多点 文档编号:739342 上传时间:2024-02-28 格式:PDF 页数:11 大小:5.84MB
下载 相关 举报
下扬子地区大隆组页岩孔隙发育特征及主控因素.pdf_第1页
第1页 / 共11页
下扬子地区大隆组页岩孔隙发育特征及主控因素.pdf_第2页
第2页 / 共11页
下扬子地区大隆组页岩孔隙发育特征及主控因素.pdf_第3页
第3页 / 共11页
亲,该文档总共11页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Doi:10.20086kw.2023.0503Sep.2023ETMINERALOGICAPETROLOGICAACTA2023年9 月石Vol.42,No.5:652662志矿杂岩物学第42 卷第5期下扬子地区大隆组页岩孔隙发育特征及主控因素曹磊 1,2,3,4,4,郭英海2,4,赵恒1,3,朱士飞1,3(1.江苏地质矿产设计研究院,江苏徐州221006;2.中国矿业大学资源与地球科学学院,江苏徐州221116;3.中国煤炭地质总局煤系矿产资源重点实验室,江苏徐州221006;4.煤层气资源与成藏过程教育部重点实验室,江苏徐州221008)摘要:为了研究下扬子地区二叠系大隆组页岩孔隙结构特

2、征,联合扫描电镜、高压压汞、Nz/CO,气体吸附实验手段对页岩储层孔隙结构进行了研究。结果表明,研究区二叠系大隆组页岩孔隙类型以有机质孔、粒间孔、粒内孔、溶蚀孔和微裂缝为主;孔隙结构为多峰态-多尺度孔隙并存,微孔-介孔-宏孔都有发育,各个尺度的孔隙对孔容都有所贡献,其中以0.7 5 1.5nm的微孔、10 35nm的介孔及大于10 0 nm的宏孔为主。通过拟合孔体积、比表面积与埋深、有机碳(TOC)、成熟度(R。)以及矿物含量的相关性发现,微孔表面积与埋深、TOC呈正相关;微介孔体积和表面积均与R。呈负相关;宏孔体积与埋深、TOC、黏土矿物含量呈负相关,与R。呈较正相关;宏孔表面积与埋深成正比

3、,与R。成反比。研究结果说明下扬子地区大隆组页岩孔隙发育主要受控于埋深、TOC、R。、黏土矿物含量等因素。关键词:下扬子地区;大隆组;孔隙结构;发育特征;主控因素中图分类号:P618.13;P58 8.2文献标识码:A文章编号:10 0 0-6 52 4(2 0 2 3)0 5-0 6 52-11The development characteristics and main control factors of shale pores in theDalong Formation of Lower Yangtze regionCAO Leil.2.3.4,GUO Ying-hai24,ZHA

4、O Hengl a1,3and ZHU Shi-feil.3(1.Jiangsu Institute of Geology and Mineral Design,Xuzhou 221006,China;2.School of Resources and Earth Sciences,China Uni-versity of Mining and Technology,Xuzhou 221116,China;3.Key Laboratory of Coal Resources and Mineral Resources,China CoalGeology Bureau,Xuzhou 221006

5、,China;4.Coal Seam Key Laboratory of Gas Resources and Accumulation Process,Ministry ofEducation,Xuzhou 221008,China)Abstract:In order to study the pore structure characteristics of the Permian Dalong Formation shale in the LowerYangtze area,the pore structure of the shale reservoir was studied by m

6、eans of scanning electron microscopy,high-pressure mercury injection and N2/CO2 gas adsorption experiments.The results show that the pore types of the Per-mian Dalong Formation shale in the study area are mainly organic pores,intergranular pores,intragranular pores,dissolution pores and microfractur

7、es.The pore structure is multi-modal and multi-scale,and micropores,meso-porous and macropores are developed.The pores of all sizes contributed to the pore volume,and the micropores of0.751.5 nm,mesoporous pores of 1035 nm and macropores larger than 100 nm were the main ones.By fittingthe correlatio

8、n between pore volume,specific surface area and buried depth,TOC,maturity(Ro)and mineral con-tent,it was found that the surface area of micropore was positively correlated with burial depth and TOC.The vol-ume and surface area of micro-mesoporous pore were negatively correlated with Ro.Macropore vol

9、ume is negatively收稿日期:2 0 2 3-0 1-13;接受日期:2 0 2 3-0 6-14;编辑:郝艳丽基金项目:江苏省自然科学基金青年基金项目(BK20200171)作者简介:曹磊(19 9 1-),女,工程师,矿产普查与勘探专业,E-mail:2 8 6 49 58 2 58 q q.c o m。网络首发时间:2 0 2 3-0 8-0 7;网络首发地址:http:/k n s.c n k i.n e t/k c m s/d e t a i l/11.19 6 6.P.2 0 2 30 8 0 7.16 46.0 0 2.h t m l653曹第5期磊等:下扬子地区大

10、隆组页隙发育特征及主控因素correlated with burial depth,TOC,and Clay mineral content,while it is positively correlated with Ro.Macroporesurface area is proportional to buried depth and inversely proportional to Ro.The research results show that thedevelopment of shale pore in the Dalong Formation of the Lower Yan

11、gtze area is mainly controlled by factors such asburial depth,TOC,Ro and clay mineral content.Key words:Lower Yangtze region;Dalong Formation;pore structure;developmental characteristics;main controlfactorFund support:Jiangsu Natural Science Foundation Youth Fund Project(BK20200171)随着北美页岩气革命的成功(Curt

12、is,2 0 0 2;Be r-nard etal.,2 0 12),页岩气作为一种重要的非常规油气资源引起了全世界的关注(LoucksandRuppel,2010;邹才能等,2 0 10;Slatt and0Brien,2 0 11;H a oandZou,2 0 13)。近年来,在北美页岩气大规模开采的影响下,中国页岩气勘探开发也取得了重大突破(董大忠等,2 0 18;张金川等,2 0 2 1)。页岩气是指以吸附态、游离态和少量溶解态存在于页岩孔隙中的甲烷(Curtis,2 0 0 2;曹磊等,2 0 2 0;袁余洋等,2020)。页岩的孔隙结构特征包括孔隙的大小、体积、比表面积、形状、连

13、通性和空间分布等(仇秀梅等,2 0 19;兰叶芳等,2 0 2 1;白莹等,2 0 2 2)。页岩孔隙结构特征极大地影响了页岩的储层特征(RossandBustin,2 0 0 9;曹涛涛等,2 0 15;邵龙义等,2016),并控制了页岩中的油气聚集和裂缝网络系统的流体运移能力,是页岩气富集、开发和潜力评价的重要参考依据(刘桃等,2 0 2 2)。因此,对页岩孔隙结构进行深人研究具有非常重要的意义。与常规油气储层不同,页岩储层以纳米级孔隙为主(Nelson,2 0 0 9),无法通过单一仪器准确地测定孔隙的各类特征,需要结合多种技术手段进行综合表征研究。目前,多种定性-定量的实验手段被应用于

14、页岩储层孔隙表征,定性手段包括场发射扫描电子显微镜(SEM)、聚焦离子束SEM和原子力SEM(Br u n a u e r a n d D a l ma,19 9 4;吉利明等,2 0 12;张吉振等,2 0 15);定量手段包括高压压汞法、低温N,/CO,气体吸附法及核磁共振法等(Yangetal.,2014)。其中SEM用于直接识别孔隙的类型、形状和大小(Curtis et al.,2 0 12;M i l l i k e n e t a l.,2 0 13;Kellyetal.,2 0 16),高压压汞法用于表征宏孔(d50nm)尺度孔隙特征,低温液氮吸附法用于表征介孔(2 nmd50n

15、m)尺度孔隙特征,二氧化碳吸附法用于表征微孔(d 0.0 0 0 5m/g,主要用于检测微孔、介孔材料的孔结构、孔径和比表面积等信息。3页岩孔隙结构特征3.1孔隙类型及特征借助扫描电镜观察发现下扬子地区二叠系大隆组页岩孔隙主要发育有机质孔、粒间孔、粒内孔、溶蚀孔和微裂缝。粒间孔主要发育在矿物颗粒之间(图3a),形态如多角形和拉长形等,且常见黏土矿物互相堆叠形成的“纸房结构”(图3b)。粒内孔的形态多为长条形、椭圆形或者槽状且孔径大小不一,草莓状黄铁矿溶蚀产生粒内溶蚀孔或进一步完全溶蚀形成印模孔(图3c),不稳定的矿物在酸性流体作用下发生溶蚀产生的溶蚀孔(图3d)。研究区大隆组页岩样品有机质含量

16、较高,有机质孔发育且大多以集合体的形式存在(图3e),孔隙形态多为圆形、椭圆形。此外,扫描电镜下还可观测到微裂缝比较发育(图3f),微裂缝的存在可以极大地改善页岩储层的储集性和渗透性。3.2高压压汞测试进汞曲线反映了压力与进汞量之间的关系。由苏皖地区大隆组页岩样品进退汞曲线图可知,4个页岩样品压汞曲线形态相似,进汞体积随着进汞压力的增加而增加(图4a)。进汞曲线总体上可以分为3段:初始低压段(0.0 0 7 0.0 2 MPa)曲线快速上升,abC粒间孔黄铁矿粒间孔印模孔2.umEHT=18.00KVSigaIA-NTS BSDDate3Sep2019umEHT=18.00KVSignaIA=

17、NTS BSDDute3Sep2019xzjk2umEHT=15.00kVSignaIA-NTS BSDDate-18Dec2021xzikTime:17:48:51xzjkZEISSZEISSZEISSWD=8.3mmWD-8.0mmMag*2.15KXMag-13.18KXTime:16:09:19WD-8.5mmMag*5.00KXTime:14:14:23def有机质孔微裂缝溶蚀孔200umEHT=18.00KVSignalA-NTS BSDDate-3Sop2019IumEHT-18.00KVSignelA-NTS BSDDate:3Sep2019xzik200mEHT=18.00k

18、VxzikWO=8.4mumMag-24.97KXTime:1541:00ZEISSWD.8.0mmMag-12.84KXTime:16:14:45ZEISSWD=8.0mmSignalA-NTS BSDTme:18:21:43Date3Sep2019xzjkZEISSMag28.64KX图3扫描电镜下样品的微观孔隙特征Fig.3 Microscopic pore characteristics of samples under scanning electron microscopea一黄铁矿粒间孔;b一粒间孔;c黄铁矿完全溶蚀或溶蚀脱落形成印模孔;d一溶蚀粒内孔;e有机质孔;f微裂缝apy

19、rite intergranular pores;bintergranular pores;cmolded pores formed by complete dissolution or dissolution shedding of pyrite;dintragranular pores of solution;eorganic matter pores;f-micro cracks石656志矿杂岩学物第42 卷表明大隆组页岩发育微米级的大孔;中压段(0.0 2 10MPa)上升趋势变缓,表明该区间孔隙发育较少;高压段(10 MPa)上升速度加快,表征大隆组页岩储层孔隙发育以纳米级孔隙为主。

20、各页岩样品退汞曲线形态较为一致,压汞在压力为0.2 MPa时出现滞后环,滞后环宽大呈下凹形态,退汞效率低,表明大隆组页岩主要以较小的孔隙网络为主,孔隙连通性较差。综上可知,大隆组页岩微、纳米级孔隙均有发育,但以纳米级孔隙为主。DW1与DW2压汞曲线近似重合,说明2 个页岩样品孔隙结构特征类似,DW4样品滞后环最大,说明相比于其他样品,DW4退汞量与进汞量相差最大,孔隙连通性最差。0.0250.0040ab0.00350.020(-3)/坐联+-DW1进汞(1_3.Tu),0.0030DW1退汞0.00250.015-DW2进汞DW1-DW2退汞0.0020DW20.010*-DW3进汞0.00

21、15DW3-DW3退汞0.0010DW40.005DW4进汞DW4退汞0.0005000.0010.11010001101001000100001000001000000压力/MPa孔径/nm图4研究区大隆组页岩样品进退汞曲线(a)及孔径分布特征(b)Fig.4Mercury advance curve(a)and pore size distribution(b)of shale samples from Dalong Formation in the study area压汞测试的孔径分布特征如图4b。孔径分布图呈多峰特征,表明大隆组页岩孔径分布的复杂性。据分段进汞体积曲线显示,DW1、D

22、 W 2、D W 3、D W 4这4个样品都是以孔径大于10 0 nm的宏孔为主,其中,大于10 0 0 0 nm的微裂缝大量发育,可能是由于高压压汞实验过程中形成的人工裂缝影响了测量结果(于萍等,2 0 2 0)3.3低温N,吸附氮气吸附并不会破坏原有孔隙结构,对于纳米级范围的孔隙具有较好的表征效果,可弥补高压压汞在纳米级孔隙表征中的不足(张云鹏等,2 0 2 1)。低温N,吸附实验得到的样品吸脱附曲线如图5a。研究区大隆组页岩吸脱附曲线形态均呈反S型,在低压段(p/po0.45),吸附量缓慢增长,中压段(0.45p/po0.8)氮气分子发生了毛细凝聚,吸附量开始突增。吸附曲线属于Bruna

23、uer和Dalma(19 9 4)对等温线的类型分类方案中的型曲线,在相对压力为0.45的时候出现回滞环,回滞环属于IUPAC分类的25a0.0012rb200.0010(i-3.Tu)/U州-DW1吸附-DW1-DW1脱附0.000815-DW2一DW2吸附-DW3-DW2脱附0.0006一-DW410DW3吸附DW3脱附0.00045-DW4吸附DW4脱附0.000200.20.600.40.811.25101520253035相对压力(plp)孔径/nm图5研究区大隆组页岩样品N,吸脱附曲线(a)及孔径分布特征(b)Fig.5 N2 adsorption and desorption c

24、urves(a)and pore size distribution(b)of shale samples from Dalong Formation in thestudy area657曹磊等:下扬子地区大隆组页孔隙发育特征及主控因素第5期H2型,兼具H1型,说明大隆组页岩中的孔隙形态以裂缝形孔为主。低温N,吸附实验的孔径分布如图5b,孔径分布曲线均呈多峰特征,主要以10 35nm的介孔为主。平均孔直径介于13.9 9 2 5.0 2 nm之间,平均为17.84nm。BET 比表面积介于2.6 9 8.8 0 m/g之间,均值6.13m/g。不同大小的孔隙对于页岩储层总孔体积均有贡献,表明

25、大隆组页岩孔径分布较为复杂。3.4低温CO,吸附N,吸附对孔隙的表征可以达到微孔级,但无法覆盖全部微孔尺度,而CO,吸附能够测量的有效孔径范围为0.35 2 nm,更加适合微孔测量。通过低温CO,吸附实验结果可知,页岩吸附体积介于3.36 310-3 4.40 310-3cm/g,平均达3.71610-3cm/g。吸附曲线(图6 a)随着压力的增大吸附体积增大,表明研究区大隆组页岩样品发育大量的微孔。DW4高于其他3个样品,表明深度越大,吸附量越大,微孔数量教多。低温CO,吸附孔径分布如图6 b,可以看出孔径分布存在多个峰值,分别在0.470.65、0.7 5 1和1 1.2 8 nm,表明在

26、这3个孔径区间的微孔数量最多。2.5a0.0012b2.00.0010-DW1-DW1-DW20.0008-DW21.5-DW3DW30.00061.0DW4-DW40.00040.50.0002000.0050.010.0150.020.0250.030.03500.20.40.60.811.21.41.6相对压力(plpo)孔径/nm图6 研究区大隆组页岩样品CO,吸附曲线(a)及孔径分布特征(b)Fig.6 CO2 adsorption curves(a)and pore size distribution characteristics(b)of shale samples from

27、Dalong Formation in thestudy area3.5全尺度孔径表征由于压汞法、N,吸附法和CO,吸附法这3种测试手段的实验原理以及测试孔径范围不一,互有重叠,基于各自实验原理,都存在各自表征优势的孔径范围,因此本次研究采用联合3类测试手段各自最优表征孔径段的方法,对孔隙实现定量全尺度精细表征。宏孔尺度孔隙采用高压压汞实验,介孔尺度孔隙采用低温液氮吸附法,微孔尺度孔隙采用二氧化碳吸附法,实现“微孔-介孔-宏孔”的孔径分布特征的准确分析。据图7 可知,大隆组页岩样品孔隙结构为多峰态-多尺度孔隙并存,微孔-介孔-宏孔都有发育,各个尺度的孔隙对孔容都有所贡献,其中以0.751.5n

28、m的微孔、10 35nm的介孔及 10 0 nm的宏孔为主。4页岩孔隙发育控制因素为了探究下扬子地区大隆组页岩孔隙发育的主控因素,本文将不同尺度孔隙的孔体积和表面积与采样深度、TOC、R。以及主要矿物进行线性拟合4.1埋深从拟合线性关系图8 可知,埋深与宏孔体积呈较好的负相关,相关系数为0.8 6 9 7,即随着埋深的增加宏孔体积减少,此阶段页岩中微纳米级宏孔的减少受控于样品的埋深压实作用;埋深与宏孔表面积呈正相关。埋深与微孔体积、微孔表面积均呈较好的正相关,相关系数分别为0.8 6 40、0.9 6 53,说明在低成熟阶段有机质处于生排烃初期,开始溶蚀作用和有机质排烃生成有机质孔,纳米孔隙大

29、量生成,页岩孔隙度和比表面积增加;埋深与介孔体积和介孔表面积相关性不明显4.2TOC含量从拟合线性关系图9 可知,微孔表面积与TOC呈正相关,相关系数为0.59 7 4;宏孔体积与TOC呈负相关,相关系数为0.7 2 17,相关性较好;介孔体积及表面积与TOC没有明显相关性,即随着TOC含量石658矿杂岩第42 卷学物0.0040ODW1DW2DW3DW40.00350.00300.0025微孔介孔宏孔裂缝0.00200.00150.0010福0.000500.1101001000100001000001000000孔径/nm图7 3种测试方法下的页岩孔隙全尺度综合表征Fig.7 Full-s

30、cale comprehensive characterization of shale pores under the three test methods孔体积/(cm3g-1)表面积/(mgl)00.0050.010.0150.020510152025925925ab930930微孔935微孔935介孔介孔雕宏孔940940邮宏孔/945R2=0.8697945950950R2=0.4094955955R2=0.8640R2=0.9653960960965965970970图8 大隆组页岩埋深与孔体积(a)和表面积(b)的相关关系Fig.8 Correlation between bur

31、ied depth and pore volume(a)and specific surface area(b)of shale from Dalong Formation0.020a25微孔微孔介孔0.018介孔R2=0.597420雕宏孔惠宏孔0.016150.014R2=0.72170.012100.01050.0080.00602.02.22.42.62.83.03.22.02.22.42.62.83.03.2TOCTOC图9 大隆组页岩TOC含量与孔体积(a)和表面积(b)的相关关系Fig.9 Correlation between TOC content and pore volu

32、me(a)and specific surface area(b)in shale from Dalong Formation659曹磊等:下扬子地区大隆组页隙发育特征及主控因素第5期的增加,微孔表面积增加,说明TOC含量对与微孔发育有很重要贡献;宏孔体积减少,说明在有机质碳化作用下页岩中大孔开始向微孔转化。4.3有机质成熟度从拟合线性关系图10 可知,微-介孔体积与R。呈较好的负相关,相关系数分别为0.8 537、0.8 8 7 2;0.02025斤a60.018R2=0.9752R2=0.8872200.016(18-2u)/4里0.01415R2=0.99260.012微孔微孔10R2=

33、0.9851介孔介孔0.010宏孔做宏孔50.008R2=0.988R2=0.853700.00601.10 1.121.141.161.18 1.20 1.221.241.261.101.121.141.161.18 1.201.221.241.26Ro/%Ro/%图10 大大隆组页岩R。与孔体积(a)和比表面积(b)的相关关系Fig.10Correlation between Ro and pore volume(a)and specific surface area(b)in shale from Dalong Formation宏孔体积与R。呈较好的正相关,相关系数为0.9 9 2 6

34、;微-介-宏孔表面积均与R。呈较好的负相关,相关系数均大于0.9 74.4矿物成分图11拟合了各尺度孔体积及表面积与脆性矿物、黏土矿物含量的相关性。由拟合结果可知,脆性矿物含量与各尺度孔体积及表面积均不具有明显的相关性。黏土矿物含量与微孔孔体积呈较好的正相关性,相关系数为0.7 2 48;与宏孔体积呈负相关,相关系数为0.7 32 6;黏土矿物含量与微孔、介孔、宏孔表0.02025ab0.018200.016150.014微孔0.012微孔10介孔介孔做宏孔0.01宏孔50.0084福0.00604244464850525442444648505254脆性矿物/%脆性矿物/%0.02025ab

35、0.018200.016150.014微孔微孔0.012R2=0.7326介孔10介孔宏孔哪宏孔0.010R2=0.724850.008福福0.0060293439444954293439444954黏土矿物/%黏土矿物/%图11大隆组页岩矿物成分与孔体积(a)和比表面积(b)的相关关系Fig.11Correlation between mineral composition and pore volume(a)and specific surface area(b)in shale from Dalong Formation石心660矿杂岩第42 卷学物面积相关性不大。因此黏土矿物含量越高,

36、微孔体积越大,宏孔体积越小。黏土矿物含量增加会导致页岩脆性降低和抗张剪能力加强,从而不利于大孔径构造裂缝发育。5结论(1)研究区二叠系大隆组页岩孔隙类型以有机质孔、粒间孔、粒内孔、溶蚀孔和微裂缝为主;孔隙结构为多峰态-多尺度孔隙并存,微孔-介孔-宏孔都有发育,各个尺度的孔隙都对孔容都有所贡献,其中以0.751.5nm的微孔、10 35nm的介孔和 10 0 nm的宏孔为主。(2)通过拟合孔体积、比表面积与埋深、TOC、R。以及矿物组分含量的相关性发现,微孔体积与埋深、黏土矿物含量呈正相关;微孔表面积与埋深、TOC呈正相关;微介孔体积和表面积均与R。呈负相关;宏孔体积与埋深、TOC、黏土矿物含量

37、呈负相关,与R。呈较好的正相关;宏孔表面积与埋深呈正相关,与R。呈负相关。结果说明下扬子地区大隆组页岩孔隙发育主要受控于埋深、TOC、R。及黏土矿物含量等因素。ReferencesBai Luheng,Shi Wanzhong,Zhang Xiaoming,et al.2021.The charac-teristics and sedimentary environment of the Permian marine shale inthe Xuanjing area of southern Anhui,Lower Yangtze J.Earth Sci-ence,46(6):2 204 2

38、217.Bai Ying,Bai Bin,Xu Wanglin,et al.2022.Shale pore characteristicsand occurrence mode of shale oil in the 7th member of Yanchang For-mation,southern Ordos Basin J.Acta Petrolei Sinica,43(10):1 3951 408(in Chinese with English abstract).Bernard S,Horsfield B,Schulz H M,et al.2012.Geochemical evolu

39、tionof organic-rich shales with increasing maturity:A STXM and TEMstudy of the Posidonia Shale(Lower Toarcian,northern Germany)J/OLJ.Marine and Petroleum Geology,31(1):089.DOI:10.1016/j.marpetgeo.2011.05.010.Brunauer and Dalma H.1994.The Four Seasons of Marian Forrster J.Journal of Evolutionary Psyc

40、hology(JEP),15(12):5459.Cao Lei and Guo Yinghai.2020.Study on the pore structure and fractalcharacteristics of shale in Shanxi Formation of Wuxiang Block J.Acta Petrologica et Mineralogica,39(3):283 290(in Chinese withEnglish abstract).Cao Taotao,Song Zhiguang,Luo Houyong,et al.2015.Micro-porediffer

41、ence and reservoir mechanism of coal,oil shale and shaleJ.Natural Gas Geoscience,26(11):2 208 2 218(in Chinese withEnglish abstract).Cao Taotao,Song Zhiguang,Wang Sibo,et al.2016.Micro-pore charac-teristics and influencing factors of Permian shale reservoir in southernAnhuiJ.Journal of Earth Science

42、s and Environment,38(5):668684(in Chinese with English abstract).Curtis M E,Sondergeld C H,Ambrose R J,et al.2012.Microstructuralinvestigation of gas shales in two and three dimensions using nanome-ter-scale resolution imaging J/OL.Aapg Bulletin,96(4):665 677.D0I:10.1306/08151110188.Curtis J B.2002.

43、Fractured shale-gas systems J/OL.AAPG Bulletin,86(11):1 9211938.DOI:10.1306/61EEDDBE-173E-11D7-8645000102C1865D.Dong Dazhong,Shi Zhensheng,Guan Quanzhong,et al.2018.Progress,challenges and prospects of shale gas exploration in the Wufeng-Long-maxi Formation,Sichuan BasinJ.Natural Gas Industry,38(4):

44、6776(in Chinese with English abstract).Hao F and Zou H.2013.Cause of shale gas geochemical anomalies andmechanisms for gas enrichment and depletion in high-maturity shalesJ/OL.Marine&Petroleum Geology,44(Complete):112.D0I:10.1016/j.marpetgeo.2013.03.005.Ji Liming,Qiu Junli,Xia Yanqing,et al.2012.Mic

45、ropore characteristicsand methane adsorption of common clay minerals by electron microsco-pyJJ.Acta Petrolei Sinica,33(2):249 256(in Chinese withEnglish abstract).Kelly S,El-Sobky H,Torres-Verdin C,et al.2016.Assessing the utilityof FIB-SEM images for shale digital rock physics J.Advances inWater Re

46、sources,95:302316.Lan Yefang,Ren Chuanjian,Huang Yu,et al.2021.Evaluation of shalegas source rocks of Wufeng-Longmaxi Formation in Yanzikou area,northwest Guizhou J.Acta Petrologica et Mineralogica,40(1):4964(in Chinese with English abstract).Liu Tao,Liao Shengbing,Fang Chaogang,et al.2022.Pore size

47、 distri-bution and its influence on gas content of Gufeng Formation shale inLower Yangtze area J/OL.China Geology:1 23 2022-11-26.http:/ Chinese with English abstract).661曹第5期磊等:下扬子地区大隆组页孔隙发育特征及主控因素Loucks R G and Ruppel S C.2007.Mississippian Barnett Shale:Lithofa-cies and depositional setting of a

48、deep-water shale-gas succession inthe Fort Worth Basin,TexasJ/OL.AAPG Bulletin,91(4):579601.D0I:10.1306/11020606059.Milliken K L,Rudnicki M,Awwiller D N,et al.2013.Organic matter-hosted pore system,Marcellus Formation(Devonian),PennsylvaniaJ/0L.Aapg Bulletin,97(2):17 7 2 0 0.D 0 I:10.130 6/072312120

49、48.Nelson P H.2009.Pore-throat sizes in sandstones,tight sandstones,andshalesJ/OL.Aapg Bulletin,93(3):329340.D0I:10.1306/10240808059.Qiu Xiumei,Liu Yadong and Dong Xuelin.2019.Study on the character-istics and gas bearing capacity of shale reservoirs in the Jianshi area ofwestern Hubei J Acta Petrol

50、ogica et Mineralogica,38(3):365374(in Chinese with English abstract).Ross D J K and Bustin R M.2009.The importance of shale compositionand pore structure upon gas storage potential of shale gas reservoirs J/OL.Marine&Petroleum Geology,26(6):916927.DOI:10.1016/j.marpetgeo.2008.06.004.Shao Longyi,Liu

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 学术论文 > 论文指导/设计

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服