资源描述
高一数学必修1 指数函数及其性质 第一课时
教学目标:1、理解指数函数的概念
2、根据图象分析指数函数的性质
3、应用指数函数的单调性比较幂的大小
教学重点:指数函数的图象和性质
教学难点:底数a对函数值变化的影响
教学方法:学导式
(一)复习:(提问)
引例1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个……1个这样的细胞分裂次后,得到的细胞个数与的函数关系式是:.
这个函数便是我们将要研究的指数函数,其中自变量作为指数,而底数2是一个大于0且不等于1的常量。
(二)新课讲解:
1.指数函数定义:
一般地,函数(且)叫做指数函数,其中是自变量,函数定义域是.
练习:判断下列函数是否为指数函数。
① ② ③(且)④
⑤ ⑥ ⑦ ⑧.
2.指数函数(且)的图象:
例1.画的图象(图(1)).
解:列出的对应表,用描点法画出图象
…
-3
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
3
…
…
0.13
0.25
0.35
0.5
0.71
1
1.4
2
2.8
4
8
…
图(1)
例2.画的图象(图(1)).
…
-3
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
3
…
…
8
4
2.8
2
1.4
1
0.71
0.5
0.35
0.25
0.13
…
指出函数与图象间的关系?
说明:一般地, 函数与的图象关于轴对称。
3.指数函数在底数及这两种情况下的图象和性质:
图象
性质
(1)定义域:
(2)值域:
(3)过点,即时
(4)在上是增函数
(4)在上是减函数
例3.已知指数函数的图象经过点,求的值(教材第66页例6)。
例4.比较下列各题中两个值的大小:
;
(教材第66页例7)
小结:学习了指数函数的概念及图象和性质;
练习:教材第68页练习1、3题。
作业:教材第69页习题2。1A组题 第6、7、8题
展开阅读全文