资源描述
1.(2008年高考全国卷Ⅱ)函数f(x)=-x的图象关于( )
A.y轴对称 B.直线y=-x对称
C.坐标原点对称 D.直线y=x对称
解析:选C.∵f(x)的定义域{x∈R|x≠0},关于原点对称,
又f(-x)=-(-x)=-(-x)=-f(x),
∴f(x)是奇函数,其图象关于原点对称.故选C.
2.函数y=ln(1-x)的图象大致为( )
解析:选C.本题中由于我们比较熟悉y=lnx的图象,它的图象是位于y轴右边过点(1,0)且有上升趋势的图象.接着y=ln(-x)的图象是由y=lnx的图象关于y轴翻折到y轴左边所得.再将所翻折图象向右移一个单位即得y=ln[-(x-1)]=ln(1-x)的图象.
3.(原创题)如右图所示,已知圆x2+y2=4,过坐标原点但不与x轴重合的直线l、x轴的正半轴及圆围成了两个区域,它们的面积分别为p和q,则p关于q的函数图象的大致形状为图中的( )
解析:选B.因p+q为定值,故选B.
4.已知下列曲线:
以下编号为①②③④的四个方程:
① -=0;②|x|-|y|=0;③x-|y|=0;④|x|-y=0.
请按曲线A、B、C、D的顺序,依次写出与之对应的方程的编号________.
解析:按图象逐个分析,注意x、y的取值范围.
答案:④②①③
5.设奇函数f(x)的定义域为[-5,5],若当x∈[0,5]时,f(x)的图象如图,则不等式f(x)<0的解集是________.
解析:由奇函数图象的特征可得f(x)在 [-5,5]上的图象.由图象可解出结果.
答案:{x|-2<x<0或2<x≤5}
6.(1)作函数y=|x-x2|的图象;
(2)作函数y=x2-|x|的图象.
解:(1)y=
即y=其图象如图①所示.
(2)y=
即y=其图象如图②所示.
展开阅读全文