1、物 理 光 学2.1 光的波动性2.1.1光的电磁理论19世纪60年代,美国物理学家麦克斯韦发展了电磁理论,指出光是一种电磁波,使波动说发展到了相当完美的地步。2.1.2光的干涉1、干涉现象是波动的特性凡有强弱按一定分布的干涉花样出现的现象,都可作为该现象具有波动本性的最可靠最有力的实验证据。2、光的相干迭加两列波的迭加问题可以归结为讨论空间任一点电磁振动的力迭加,所以,合振动平均强度为其中、为振幅,、为振动初相位。3、光的干涉阳光图2-1-1(1)双缝干涉在暗室里,托马斯杨利用壁上的小孔得到一束阳光。在这束光里,在垂直光束方向里放置了两条靠得很近的狭缝的黑屏,在屏在那边再放一块白屏,如图2-
2、1-1所示,于是得到了与缝平行的彩色条纹;如果在双缝前放一块滤光片,就得到明暗相同的条纹。A、B为双缝,相距为d,M为白屏与双缝相距为l,DO为AB的中垂线。屏上距离O为x的一点P到双缝的距离高中物理竞赛光学原子物理学教程 第二讲物理光学L2MNSd图2-1-2由于d、x均远小于l,因此PB+PA=2l,所以P点到A、B的光程差为:SL图2-1-3若A、B是同位相光源,当为波长的整数倍时,两列波波峰与波峰或波谷与波谷相遇,P为加强点(亮点);当为半波长的奇数倍时,两列波波峰与波谷相遇,P为减弱点(暗点)。因此,白屏上干涉明条纹对应位置为暗条纹对应位置为。其中k=0的明条纹为中央明条纹,称为零级
3、明条纹;k=1,2时,分别为中央明条纹两侧的第1条、第2条明(或暗)条纹,称为一级、二级明(或暗)条纹。WLL0W幕幕图2-1-4相邻两明(或暗)条纹间的距离。该式表明,双缝干涉所得到干涉条纹间的距离是均匀的,在d、l一定的条件下,所用的光波波长越长,其干涉条纹间距离越宽。可用来测定光波的波长。(2)类双缝干涉双缝干涉实验说明,把一个光源变成“两相干光源”即可实现光的干涉。类似装置还有菲涅耳双面镜:如图2-1-2所示,夹角很小的两个平面镜构成一个双面镜(图中已经被夸大了)。点光源S经双面镜生成的像和就是两个相干光源。埃洛镜如图2-1-3所示,一个与平面镜L距离d很小(数量级0.1mm)的点光源
4、S,它的一部分光线掠入射到平面镜,其反射光线与未经反射的光线叠加在屏上产生干涉条纹。因此S和就是相干光源。但应当注意,光线从光疏介质射入光密介质,反射光与入射光相位差,即发生“并波损失”,因此计算光程差时,反身光应有的附加光程差。双棱镜图2-1-4如图2-1-4所示,波长的平行激光束垂直入射到双棱镜上,双棱镜的顶角,宽度w=4.0cm,折射率n=1.5问:当幕与双棱镜的距离分别为多大时,在幕上观察到的干涉条纹的总数最少和最多?最多时能看到几条干涉条纹?S1S2dD图2-1-5平行光垂直入射,经双棱镜上、下两半折射后,成为两束倾角均为的相干平行光。当幕与双棱镜的距离等于或大于时,两束光在幕上的重
5、叠区域为零,干涉条纹数为零,最少,当幕与双棱镜的距离为L时,两束光在幕上的重叠区域最大,为,干涉条纹数最多。利用折射定律求出倾角,再利用干涉条纹间距的公式及几何关系,即可求解式中是双棱镜顶角,是入射的平行光束经双棱镜上、下两半折射后,射出的两束平行光的倾角。如图2-1-5所示,相当于杨氏光涉,D,,而 条纹间距可见干涉条纹的间距与幕的位置无关。当幕与双棱镜的距离大于等于时,重叠区域为零,条纹总数为零当屏与双棱镜相距为L时,重叠区域最大,条纹总数最多相应的两束光的重叠区域为其中的干涉条纹总数条。对切双透镜d(a)(b)(a)图2-1-6如图2-1-6所示,过光心将透镜对切,拉开一小段距离,中间加
6、挡光板(图a);或错开一段距离(图b);或两片切口各磨去一些再胶合(图c)。置于透镜原主轴上的各点光源或平行于主光轴的平行光线,经过对切透镜折射后,在叠加区也可以发生干涉。 (3)薄膜干涉当透明薄膜的厚度与光波波长可以相比时,入射薄膜表面的光线薄满前后两个表面反射的光线发生干涉。等倾干涉条纹ABcD图2-1-7如图2-1-7所示,光线a入射到厚度为h,折射率为的薄膜的上表面,其反射光线是,折射光线是b;光线b在下表面发生反射和折射,反射线图是,折射线是;光线再经过上、下表面的反射和折射,依次得到、等光线。其中之一两束光叠加,、两束光叠加都能产生干涉现象。a、 b光线的光程差=如果i=0,则上式
7、化简为。由于光线在界面上发生反射时可能出现“半波损失”,因此可能还必须有“附加光程差”,是否需要增加此项,应当根据界面两侧的介质的折射率来决定。当时,反射线、都是从光密介质到光疏介质,没有“半波损失”,对于、,不需增加;但反射线是从光疏介质到光密介质,有“半波损失”,因此对于、,需要增加。当时,反射线、都有“半波损失”,对于、仍然不需要增加;而反射线没有“半波损失”,对于、仍然必须增加。同理,当或时,对于、需要增加;对于、不需要增加。在发生薄膜干涉时,如果总光程等于波长的整数倍时,增强干涉;如果总光程差等于半波长的奇数倍时,削弱干涉。入射角越小,光程差越小,干涉级也越低。在等倾环纹中,半径越大
8、的圆环对应的也越大,所以中心处的干涉级最高,越向外的圆环纹干涉级越低。此外,从中央外各相邻明或相邻暗环间的距离也不相同。中央的环纹间的距离较大,环纹较稀疏,越向外,环纹间的距离越小,环纹越密集。AB图2-1-8等厚干涉条纹当一束平行光入射到厚度不均匀的透明介质薄膜上,在薄膜表面上也可以产生干涉现象。由于薄膜上下表面的不平行,从上表面反射的光线和从下面表反射并透出上表面的光线也不平行,如图2-1-8所示,两光线和的光程差的精确计算比较困难,但在膜很薄的情况下,A点和B点距离很近,因而可认为AC近似等于BC,并在这一区域的薄膜的厚度可看作相等设为h,其光程差近似为QMNC图2-1-9当i保持不变时
9、,光程差仅与膜的厚度有关,凡厚度相同的地方,光程差相同,从而对应同一条干涉条纹,将此类干涉条纹称为等厚干涉条纹。当i很小时,光程差公式可简化为。劈尖膜QMNC图2-1-9如图2-1-9所示,两块平面玻璃片,一端互相叠合,另一端夹一薄纸片(为了便于说明问题和易于作图,图中纸片的厚度特别予以放大),这时,在两玻璃片之间形成的空气薄膜称为空气劈尖。两玻璃片的交线称为棱边,在平行于棱边的线上,劈尖的厚道度是相等的。当平行单色光垂直()入射于这样的两玻璃片时,在空气劈尖()的上下两表面所引起的反射光线将形成相干光。如图1-2-9所示,劈尖在C点处的厚度为h,在劈尖上下表面反射的两光线之间的光程差是。由于
10、从空气劈尖的上表面(即玻璃与空气分界面)和从空气劈尖的下表面(即空气与玻璃分界面)反射的情况不同,所以在式中仍有附加的半波长光程差。由此明纹暗纹干涉条纹为平行于劈尖棱边的直线条纹。每一明、暗条纹都与一定的k做相当,也就是与劈尖的一定厚度h相当。任何两个相邻的明纹或暗纹之间的距离由下式决定:式中为劈尖的夹角。显然,干涉条纹是等间距的,而且愈小,干涉条纹愈疏;愈大,干涉条纹愈密。如果劈尖的夹角相当大,干涉条纹就将密得无法分开。因此,干涉条纹只能在很尖的劈尖上看到。牛顿环ABOCR图2-1-10在一块光平的玻璃片B上,放曲率半径R很大的平凸透镜A,在A、B之间形成一劈尖形空气薄层。当平行光束垂直地射
11、向平凸透镜时,可以观察到在透镜表面出现一组干涉条纹,这些干涉条纹是以接触点O为中心的同心圆环,称为牛顿环。牛顿环是由透镜下表面反射的光和平面玻璃上表面反射的光发生干涉而形成的,这也是一种等厚条纹。明暗条纹处所对应的空气层厚度h应该满足: 从图2-1-10中的直角三角形得因Rh,所以2Rh,得上式说明h与r的平方成正比,所以离开中心愈远,光程差增加愈快,所看到的牛顿环也变得愈来愈密。由以上两式,可求得在反射光中的明环和暗环的半径分别为:随着级数k的增大。干涉条纹变密。对于第k级和第k+m级的暗环由此得透镜的且率半径牛顿环中心处相应的空气层厚度h=0,而实验观察到是一暗斑,这是因为光疏介质到光密介
12、质界面反射时有相位突变的缘故。例1 在杨氏双缝干涉的实验装置中,缝上盖厚度为h、折射率为n的透明介质,问原来的零级明条纹移向何处?若观察到零级明条纹移到原来第k明条纹处,求该透明介质的厚度h,设入射光的波长为。S1S2SABMNOL图2-1-11解:设从、到屏上P点的距离分别为、,则到P点的光程差为当时,的应零级条纹的位置应满足原来两光路中没有介质时,零级条纹的位置满足,与有介质时相比,可见零级明条纹应该向着盖介质的小孔一侧偏移。ASPOM1M2图2-1-12原来没有透明介质时,第k级明条纹满足当有介质时,零级明条纹移到原来的第k级明条纹位置,则必同时满足和从而显然,k应为负整数。例2 菲涅耳
13、双面镜。如图2-1-12所示,平面镜和之间的夹角很小,两镜面的交线O与纸面垂直,S为光阑上的细缝(也垂直于图面),用强烈的单色光源来照明,使S成为线状的单色光源,S与O相距为r。A为一挡光板,防止光源所发的光没有经过反射而直接照射光屏P(1)若图中,为在P上观察干涉条纹,光屏P与平面镜的夹角最好为多少?(2)设P与的夹角取(1)中所得的最佳值时,光屏与O相距为L,此时在P上观察到间距均匀的干涉条纹,求条纹间距x。(3)如果以激光器作为光源,(2)的结果又如何?LM2M1OdS1S2SPA图2-1-13解:(1)如图2-1-13,S通过、两平面镜分别成像和,在光屏P上看来,和则相当于两个相干光源
14、,故在光屏P上会出现干涉现象。为在P上观察干涉条纹,光屏P的最好取向是使和与它等距离,即P与的连线平行。图2-1-13图中和S关于平面镜对称,和S关于平面镜对称,所以,O为顶角为2腰长为r的等腰三角形,故光屏P的最佳取向是P的法线(通过O点)与平面镜的夹角等于,或光屏P与平面镜的夹角为90(2)由图可看出,和之间的距离为,和到光屏P的距离为ABSdCDbM图2-1-14图2114,由此,屏上的干涉条纹间距为(3)如果以徼光器作为光源,由于激光近于平行,即相当S位于无穷远处。上式简化为若用两相干光束的夹角表示,上式可写成例3 如图2-1-14所示的洛埃镜镜长l=7.5cm,点光源S到镜面的距离d
15、=0.15mm,到镜面左端的距离b=4.5cm,光屏M垂直于平面镜且与点光源S相距L=1.2m。如果光源发出长的单色光,求:(1)在光屏上什么范围内有干涉的条纹?(2)相邻的明条纹之间距离多大?(3)在该范围内第一条暗条纹位于何处?分析:洛埃镜是一个类似双缝干涉的装置,分析它的干涉现象,主要是找出点光源S和它在平面镜中的像,这两个就是相干光源,然后就可利用杨氏双缝干涉的结论来求解,但注意在计算光程差时,应考虑光线从光疏媒质入射到光密媒质时,反射光与入射光相位差180。,即发生“半波损失”。解:(1)如图2-1-14所示,S点光源发出的光一部分直接射到光屏上,另一部分经平面镜反射后再射到光屏,这
16、部分的光线好像从像点发出,因为到达光屏这两部分都是由S点光源发出的,所以是相干光源。这两部分光束在光屏中的相交范围AB就是干涉条纹的范围由图中的几何关系可以得到: 由、两式解得由图中可知由、两式可知在距离光屏与平面镜延长线交点C相距1.353.85cm之间出现干涉条纹。(2)相邻干涉条纹的距离为P AM图2-1-15(3)由于从平面镜反射的光线出现半波损失,暗条纹所在位置S和的光程差应当满足即 又因为条纹必须出现在干涉区,从解可知,第一条暗纹还应当满足 由、式解得即在距离C点1.44cm处出现第一条暗条纹。图2-1-16点评:这是一个光的干涉问题,它利用平面镜成点光源的像S,形成有两个相干点光
17、源S和,在光屏上出现干涉条纹。但需要注意光线由光疏媒质入射到光密媒质时会发生半波损失现象ABCD图2-1-17例4 一圆锥透镜如图图2-1-15所示,S,为锥面,M为底面;通过锥顶A垂直于底面的直线为光轴。平行光垂直入射于底面,现在把一垂直于光轴的平面屏P从透镜顶点A向右方移动,不计光的干涉与衍射。1、用示意图画出在屏上看到的图像,当屏远一时图像怎样变化?2、设圆锥底面半径为R,锥面母线与底面的夹角为(3。5。),透镜材料的折射率为n。令屏离锥顶A的距离为x,求出为描述图像变化需给出的屏的几个特殊位置。解:1入射光线进入透镜底面时,方向不变,只要在镜面上发生折射,如图1-3-6所示,由图可见,
18、过锥面的折射角满足折射定律而光线的偏向角,即折射线与轴的夹角=-。(a) (b) (c) (d) 图2-1-18行光线的偏向角。图2-1-16画出在图面上的入射光线经透镜后的折射光束的范围。通这也是所有入射的平过锥面S处和处的折射分别相互平行,构成两个平面光束,交角为。把图图2-1-17绕光轴旋转180。就得到经过透镜后的全部出射光线的空间分布。下面分析在屏上看到的图像及屏向远处移动时图像的变化。(1)当屏在A处时,照到屏上的光束不重叠,屏上是一个明亮程度均匀的圆盘,半径略小于R。(2)屏在A、B之间时,照到屏上的光束有部分重叠,在光束重叠处屏上亮度较不重叠处大,特别是在屏与光轴的交点,即屏上
19、图像中央处,会聚了透镜底面上一个极细的圆环上的全部入射光的折射线,因此这一点最亮。在这点周围是一个以这点为中心的弱光圆盘,再外面是更弱的光圆环,如图2-1-18(a)。(3)在屏从A到B远移过程中,屏上图像中央的亮点越远越亮(这是因为会聚在这里的入射光细圆环半径增大,面积增大);外围光圆盘越远越大,再外的弱光圆环则外径减小,宽度减小,直到屏在B点时弱光环消失。(4)屏在B点时,在中央亮点之外有一亮度均匀的光圆盘,如图2-1-18(b)。(5)屏继续远移时,图像又一般地如图图2-1-18(a)形状,只是屏越远中央亮点越亮,亮点周围光圆盘越小,再外弱光环越宽、越大。(6)当屏移到C点时,图像中亮点
20、达到最大亮度。外围是一个由弱光圆环扩大而成的光圆盘。如图2-1-18(c)。(7)屏移过C点后到达光束缚不重叠的区域,这时屏上图像为中央一个暗圆盘,外围一个弱光圆环,不再有中央亮点。如图2-1-18(d)。(8)屏继续远移,图像形状仍如图2-1-18(d)只是越远暗盘半径越大,外围弱光环也扩大,但环的宽度不变。2在较小时,也小,有,故。略去透镜厚度,则B,C处距A的距离分别为a屏D(a)(b) (c) 图2-1-19因此在第1问解答中,(1),(2),(3),(4)所述的变化过程对应于(5),(6)所述的图像变化过程对应于(7),(8)所述的图像变化过程对应于例5 将焦距f=20cm的凸透镜从
21、正中切去宽度为a的小部分,如图2-1-19(a),再将剩下两半粘接在一起,构成一个“粘合透镜”,见图2-1-19(b)。图中D=2cm,在粘合透镜一侧的中心轴线上距镜20cm处,置一波长的单色点光源S,另一侧,垂直于中心轴线放置屏幕,见图2-1-19(c)。屏幕上出现干涉条纹,条纹间距x=0.2mm,试问1切去部分的宽度a是多少?OOF图2-1-202为获得最多的干涉条纹,屏幕应离透镜多远?解:1、首先讨论粘合透镜的上半个透镜的成像。在图2-1-20中OO是粘合透镜的中心轴线,在OO上方用实线画出了上半个透镜,在OO下方未画下半个透镜,而是补足了未切割前整个透镜的其余部分,用虚线表示。整个透镜
22、的光轴为半个透镜产成像规律应与完整的透像相同。现在物点(即光源)S在粘合透镜的中心轴线上,即在图中透镜的光轴上方处,离透镜光心的水平距离正好是透镜的焦距。根据几何光学,光源S发出的光线,经透镜光心的水平距离正好是透镜的焦距。根据几何光学,光源S发出的光线,经透镜折射后成为一束平行光束,其传播方向稍偏向下方,与光轴(对OO也是一样)成角为。当透镜完整时光束的宽度为:透镜直径透镜直径。对于上半个透就,光事宽度为。 OPdS图2-1-21同理,S所发的光,经下半个透镜折射后,形成稍偏向上方的平行光束,与轴成角,宽度也是。于是,在透镜右侧,成为夹角为的两束平行光束的干涉问题(见图2-1-21),图中的
23、两平行光束的重叠区(用阴影表示)即为干涉区。为作图清楚起见,图2-1-21,特别是图12-1-21中的角,均远较实际角度为大。谷ABCDE谷峰峰图2-1-22图2-1-22表示的是两束平行光的干涉情况,其中是和图2-1-21中的相对应的。图2-1-22中实线和虚线分别表示某一时刻的波峰平面和波谷平面。在垂直于中心轴线屏幕上,A、B、C表示相长干涉的亮纹位置,D、E表示相消干涉的暗纹位置,相邻波峰平面之间的垂直距离是波长。故干涉条纹间距x满足在很小的情况下,上式成为。所以透镜切去的宽度=果然是一个很小的角度。2、由以上的求解过程可知,干涉条纹间距与屏幕离透镜L的距离无关,这正是两束平行光干涉的特
24、点。但屏幕必须位于两束光的相干叠加区才行。图2-1-22中以阴影菱形部分表示这一相干叠加区。因为由(1)式知条纹是等距的,显然当屏幕位于PQ处可获得最多的干涉条纹,而PQ平面到MFNOL1L2图2-1-23透镜L的距离MNPFBL1L2O0.1mm0.1mm图2-1-24例6如图2-1-23所示,薄透镜的焦距f=10cm,其光心为O,主轴为MN,现将特镜对半切开,剖面通过主轴并与纸面垂直。O2O1L1L2F1F2PN图2-1-251将切开的二半透镜各沿垂直剖面的方向拉开,使剖面与MN的距离均为0.1mm,移开后的空隙用不透光的物质填充组成干涉装置,如图2-1-24所示,其中P点为单色点光源,P
25、O=20cm,B为垂直于MN的屏,OB=40cm。(1)用作图法画出干涉光路图。(2)算出屏B上呈现的干涉条纹的间距。(3)如屏B向右移动,干涉条纹的间距将怎样变化?O2O1L1L2F1F2PM图2-1-26N2将切开的二半透镜沿主轴MN方向移开一小段距离,构成干涉装置,如图2-1-25所示,P为单色光源,位于半透镜的焦点外。(1)用作图法画出干涉光路图。MNDPBF2F1图2127(2)用斜学标出相干光束交叠区。(3)在交叠区内放一观察屏,该屏与MN垂直,画出所呈现的干涉条纹的形状。3在本题第2问的情况下,使点光源P沿主轴移到半透镜的焦点处,如图2-1-26所示,试回答第2问中各问。解:1(
26、1)如图2-1-27,从点光源P引和两条光线,过光心后沿原方向传播。引PO轴助光线,该光线与的主轴平行,若经折射后必通过焦点,沿方向传播,与相交于点,为P经上半透镜成像得到的实像点。同理,是P经下半透镜所成的实像点,连接和,所得P点发出的光束经两半透镜折射后的光束的范围。和是二相干的实的点光源,像线所标的范围为相干光束交叠区。(2)在交叠区放一竖直的接收屏,屏上呈现出与纸面垂直的明暗相间的条纹,其条纹间距为(3)屏B向右移动时,D增大,条纹间距增大。MNPF1F2O1O2S1S2图2-1-28(a)(b)2(1)如图2-1-28 (a),从点光源P引和三条光线,过光心和沿直线方向传播,过引平行
27、于的辅助光线经不发生折射沿原方向传播,与过的焦面交于点,连接直线与主轴交于点,该点为P经上半透镜成像所得的实像点;同理可得P经下半透镜所成的实像点,此二实像点沿主轴方向移开。(2)图2-1-28 (a)中斜线标出的范围为二相干光束交叠区。(3)在观察屏B上的干涉条纹为以主轴为中心的一簇明暗相间的同心半圆环,位于主轴下方,如图2-1-28(b)所示。3(1)如图2-1-29(a),点光源P移至光线经过透镜后方向仍不变,而光线经上半透镜折射后变成与主轴平行的光线,光线经下半透镜折射后与交于点,为P经下半透镜所成的实像点。(2)图2-1-29 (a)中斜线所标出的范围为这种情况下的相干光束重叠区域。
28、 S1BNO2O1L1L2F2F1PM图2-1-29(a)(b)(3)这种情况在观察屏B上呈现出的干涉条纹也是以主轴为中心的一簇明暗相间的同心半圆环,但位于主轴上方,如图2-1-29(b)所示。例7、一束白光以角射在肥皂膜上,反射光中波长的绿光显得特别明亮。1、试问薄膜最小厚度为多少?2、从垂直方向观察,薄膜是什么颜色?肥皂膜液体的折射率n=1.33解:1、入射到A点的光束一部分被反射,另一部分被折射并到达B点。在B点又有一部分再次被反射,并经折射后在C点出射。光线DC也在C点反射。远方的观察者将同时观察到这两条光线。BDCA图2-1-30在平面AD上,整个光束有相同的相位。我们必须计算直接从
29、第一表面来的光线与第二面来的光线之间的相位差。它取决于光程差,即取决于薄膜的厚度。无论发生干涉或相消干涉,白光中包含的各种波长的光线都会在观察的光中出现。光线从A到C经第二表面反射的路程为在媒质中波长为,故在距离AB+BC上的波数为光线从D到C经第一表面反射的路程为在这段距离上,波长为,故波数为我们知道,当光从较大折射率的媒质反射时,光经历180。相位差,故DC段的波数为如果波数差为整数k,则出现加强,即经过一些变换后,得到下述形式的加强条件哪一种波长可得到极大加强,这只取决于几何路程和折射率。我们无法得到纯单色光。这是由于邻近波长的光也要出现,虽然较弱。k较大时,色彩就浅一些。所以如平板或膜
30、太厚,就看不到彩色,呈现出一片灰白。本题中提到的绿光明亮,且要求薄膜的最小厚度。因此我们应取k=0,得到膜层厚度为2、对于垂直入射,若k=0,呈现极大加强的波长为n1n2n3图2-1-31用以上的d值,得对于任何厚度的膜层,可从用同样的方式算出。在本题中PQ待测工件图2-1-32它稍带黄色的绿光相对应。例8、在半导体元件的生产中,为了测定Si片上的薄膜厚度,将薄膜磨成劈尖形状。如图2-1-31所示,用波长=5461的绿光照射,已知的折射率为1.46,Si的折射率了3.42,若观察到劈尖上出现了7个条纹间距,问薄膜的厚度是多少?解:设图中从上到下依次为空气、和Si,由于的折射率小于Si的折射率,
31、所以光从空气射入劈尖的上、下表面反射时都有半波损失,因此在棱边(劈膜厚度d=0处)为明条纹。当劈膜厚度d等于光在膜层中半波长的奇数倍时(或者膜层厚度d的2倍等于光在膜层中波长的整数倍时)都将出现明条纹。所以明条纹的位置应满足:因此相邻明条纹对应的劈膜厚度差为所以在劈膜开口处对应的膜层厚度为例9、利用劈尖状空气隙的薄膜干涉可以检测精密加工工件的表面质量,并能测量表面纹路的深度。测量的方法是:把待测工件放在测微显微镜的工作台上,使待测表面向上,在工件表面放一块具有标准光学平面的玻璃,使其光学平面向下,将一条细薄片垫在工件和玻璃板之间,形成劈尖状空气隙,如图2-1-32所示,用单色平行光垂直照射到玻
32、璃板上,通过显微镜可以看到干涉条文。如果由于工件表面不平,观测中看到如图上部所示弯曲的干涉条纹。请根据条纹的弯曲方向,说明工件表面的纹路是凸起还不下凹?证明维路凸起的高度(或下凹的深度)可以表示为 ,式中为入射单色光的波长,a、b的意义如图。分析:在劈尖膜中讲过,空气隙厚度h与k存在相应关系。若工作表面十分平整,则一定观察到平行的干涉条纹。由于观察到的条纹向左弯曲,说明图中P点与Q点为同一k级明纹或暗纹。且某一k值与厚度h有线性正比关系。故P点与Q点对应的k相等,工件必下凹。解单色光在空气隙薄膜的上下表面反射,在厚度x满足:时出现明条纹,相邻明条纹所对应的空气隙的厚度差 。可见,对应于空气隙相
33、等厚度的地方同是明条纹,或同是暗条纹。从图中可以看出,越向右方的条纹,所对应的空气隙厚度越大。故条纹左弯,工件必下凹。由图中看出,干涉条纹间距为b,对应的空气隙厚度差为。又因为条纹最大弯曲程度为a,因此完所对应的纹路最大深度h应满足h:所以 。2.1.3 光的衍射光绕过障碍物偏离直线传播而进入几何阴影,并在屏幕上出现光强不均匀分布的现象,叫做光的衍射。1、惠更斯菲涅耳原理(1)惠更斯原理图2-1-33惠更斯指出,由光源发出的光波,在同一时刻t时它所达到的各点的集合所构成的面,叫做此时刻的波阵面(又称为波前),在同一波阵面上各点的相位都相同,且波阵面上的各点又都作为新的波源向外发射子波,子波相遇
34、时可以互相叠加,历时t后,这些子波的包络面就是t+t时刻的新的波阵面。波的传播方向与波阵面垂直,波阵面是一个平面的波叫做平面波,其传播方向与此平面垂直,波阵面是一个球面(或球面的一部分)的波叫做球面波,其传播方向为沿球面的半径方向,如图2-1-33(2)菲涅耳对惠更斯原理的改进(惠菲原理)SPN图2-1-34波面S上每个面积单元都可看作新的波源,它们均发出次波,波面前方空间某一点P的振动可以由S面上所有面积所发出的次波在该点迭加后的合振幅来表示。面积元ds所发出各次波的振幅和位相符合下列四个假设:在波动理论中,波面是一个等位相面,因而可以认为面上名点所发出的所有次波都有相同的初位相(可令)。次
35、波在P点处的振幅与r成反比。O图2-1-37从面积元所发出的次波的振幅正比于的面积,且与倾角有关,其中为ds的法线N与ds到P点的连线r之间的夹角,即从ds发出的次波到达P点时的振幅随的增大而减小(倾斜因数)。次波在P点处的位相,由光程决定 。(3)泊松亮斑当时法国著名的数学家泊松在阅读了菲涅耳的报告后指出:按照菲涅耳的理论,如果让平行光垂直照射不透光的圆盘,那么在圆盘后面的光屏上所留下的黑影中央将会出现一个亮斑。因为垂直于圆盘的平行光照到时,圆盘边缘将位于同一波阵面上,各点的相位相同,它们所发生的子波到达黑影中央的光程差为零,应当出现增强干涉。泊松原想不能观察到这一亮斑来否定波动说,但菲涅耳
36、勇敢地面对挑战,用实验得到了这个亮斑。2、圆孔与圆屏的菲涅耳衍射(1)圆孔衍射SL1L2线光源 狭缝图2-1-35将一束光(如激光)投射在一个小圆孔上,并在距孔12米处放置一玻璃屏,则在屏上可看到小圆孔的衍射花样。其中波带改为其中由圆孔半径P,光的波长,圆孔位置(与R)确定。(2)圆屏衍射不问圆屏大小和位置怎样,圆屏几何影子的中心永远有光,泊松亮斑即典型。3、单缝和圆孔的夫琅和费衍射夫琅和费衍射又称远场衍射,使用的是平行光线,即可认为光源距离为无限远。它不同于光源距离有限的菲涅耳衍射。在实验装置中更有价值。夫琅和费衍射指用平行光照射障碍物时在无穷远处的衍射图像。由于无穷远与透镜的焦平面上是一对
37、共扼面,所以可以用透镜将无穷远处的衍射花样成像于焦平面上单缝的夫琅和费衍射装置如图2-1-35所示,S为与狭缝平行的线光源,置于的前半焦平面上,由惠更斯菲涅耳原理可计算出屏上任一点P的光强为图2-1-36式中,为波长,b为狭缝宽度,为P点对中心轴线所张的角,为中心点光强。单缝的夫琅和费衍射图像和光强分布如图2-1-36,在衍射光强分布中,可知时,I=0。其中心条纹对应的夹角为,屏上的宽度则为(f为的焦距)。它表明,当狭缝官宽b变小时,中心衍射条纹变宽。若用点光源和圆孔分别代替图2-1-35中的线光源S和狭缝,在屏便可得到小圆孔的衍射花样, 其光强分布如图2-1-37.D为小圆孔的直径,中央亮圆
38、斑称为爱里斑,爱里斑边缘对中心光轴的夹角为。圆孔衍射是非常重要的,在光学仪强中,光学元件的边缘一般就是圆孔,对于一物点,由于这元件边缘的衍射,所成的像不再是点,而是一个爱里斑,这将影响光学仪器的分辩相邻物点的能力。根据瑞利判据,当两个爱里斑中心角距离为时,这两个像点刚好可以分辩,小于就不可分辨了。4、衍射光栅由大量等宽度等间距的平行狭缝所组成的光学元件称为衍射光栅,将衍射光栅放置在图2-1-35的狭缝位置上,在衍射屏上便可观察到瑞利的亮条纹,这些亮条纹所对应的角度应满足d为两狭缝之间的间距,m称为衍射级数。上式称为光栅方程。从方程中可以看出。不同的波长,其亮条纹所对应的不同,所以光栅可以用来作
39、光谱仪器的色散元件。 图2-1-37例1、一个由暗盒组成的针孔照相机,其小孔直径为d,暗盒中像成在小孔后距离为D的感光胶片上如图2-1-37,物体位于小孔前L处,所用波长为。(1)估计成像清晰时小孔半径的大小。(2)若使用中算出的小孔,试问物体上两点之间的最小距离是多少时?该两点的像是否可分辨? 解:(1)物体上一点在照像底片上成的像由两个因素决定的,一是小孔的几何投影,一是小孔的夫琅禾费衍射(Dd)。几何投影产生物点的像的直径是衍射效应扩大了几何投影区,所增加的直径大小为 总的像直径为可见当小孔d小时,则第一项小,第二项大。当d大时,第二项小,第一项大。当时,最小,其值是(2)由(1)知,对
40、小孔直径为d的针孔照像机,物上一几何点在底片上所成像的大小为物上相邻两点AB在底片上要能分辨,根据瑞利判据,其像点中心距离,由几何关系得图2-1-38即物上两点间的距离要大于时,该两点的像是能分辨的。例2、用分波带矢量作图方法求出单缝的夫琅禾费衍射分布。图2-1-39 解: 将缝宽为b的狭缝分成N条宽度相等的极窄条,称为子缝,其宽为, N很大,则每一子缝可作为一几何线,这些子缝到屏上某一点P的距离想差很小,所以它们在P点引起的振幅a近似相等。至于位相,每一条子缝到P点是不同的,但相邻两子缝在屏上所引起的位相差为为如图2-1-38(b)所示的光程差,它等于,第一条子缝与最后一条子缝总位相差,见图
41、2-1-38(a)。各子缝在P点产生的振动E;叠加即为整个缝在P点的振动。这振动叠加可借助其矢量作图法来求出,如图2-1-39为矢量量,图中矢量图,图中矢量总长度是相同的,都为Na当=0,即=0对应的中心点上,缝上各点波面到达时振动位相同,则各点振幅矢量合成如图2-1-39(a)。代表此点的合振动,这时光强最大(即主最大)对任一,缝上相邻各点的振动位相相差,对应的矢量将转动,缝上两边缘的位相差为2,各矢量构成一圆心角为2的弧如图(b),它们的合矢量A等于这段弧的弦。由几何关系可得其强度 当=,即时,振幅矢量卷成一圆,故A=0,如图(c)。随着增大,即增大,矢量曲线将越卷越小,合矢量也越来越小,对应的强度也随之减小。2.1.4、光的偏振光波是横波,这可以用光的偏振实验来证明。通过两块偏振片来观察某一普通发光源,旋转其中一块偏振片,我们会发现,每旋转360。,观察到的光强会由暗变亮再变暗再变亮的交替变化两次,下面来解释这一现象。VAv0P012图2-2-1普通光源是为数众多的分子或