资源描述
综合练习二
1(2012•合山市校级模拟)如图,大半圆O与小半圆O1相切于点C,大半圆的弦AB与小半圆相切于点F,且AB∥CD,AB=6cm,CD=12cm,则图中阴影部分的面积是( )
第1题图 第2题图 第3题图
A. B. C. D.
2.(2009•余姚市校级模拟)如图,半圆的直径AB=10cm,弦AC=6cm,把AC沿直线AD对折恰好与AB重合,则AD的长为( )
A.4cm B.3cm C.5cm D.8cm
3.(2015•金堂县二模)如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x﹣m)2+n的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为﹣3,则点D的横坐标最大值为 .
4.(2010•江津区)已知:在面积为7的梯形ABCD中,AD∥BC,AD=3,BC=4,P为边AD上不与A、D重合的一动点,Q是边BC上的任意一点,连接AQ、DQ,过P作PE∥DQ交AQ于E,作PF∥AQ交DQ于F,则△PEF面积最大值是 .
第4题图 第5题图
5.(2009•宁波校级模拟)如图,将半径为2,圆心角为60°的扇形纸片AOB,在直线l上向右作无滑动的滚动至扇形A′O′B′处,则顶点O经过的路线总长为 .
6.(2012•资阳)如图,O为矩形ABCD的中心,M为BC边上一点,N为DC边上一点,ON⊥OM,若AB=6,AD=4,设OM=x,ON=y,则y与x的函数关系式为 .
第6题图 第7题图 第8题图
7.(2011•芜湖)如图,在正方形ABCD内有一折线段,其中AE丄EF,EF丄FC,并且AE=6,EF=8,FC=10,则正方形与其外接圆之间形成的阴影部分的面积为 .
8.(2011•连城县校级自主招生)如图已知A1,A2,A3,…An是x轴上的点,且OA1=A1A2=A2A3=A3A4=…=An﹣1An=1,分别过点A1,A2,A3,…An′作x轴的垂线交二次函数y=x2(x>0)的图象于点P1,P2,P3,…Pn,若记△OA1P1的面积为S1,过点P1作P1B1⊥A2P2于点B1,记△P1B1P2的面积为S2,过点P2作P2B2⊥A3P3于点B2,记△P2B2P3的面积为S3,…依次进行下去,最后记△Pn﹣1Bn﹣1Pn(n>1)的面积为Sn,则Sn=( )
A. B. C. D.
9.(2013秋•郎溪县月考)在Rt△ABC中,AB=AC=2,∠A=90°,现取一块等腰直角三角板,将45°角的顶点放在斜边BC的中点O处,三角板的直角边与线段AB、AC分别交于点E、点F,设BE=x,CF=y,∠BOE=α(45°≤α≤90°).(1)试求y与x的函数关系式,并写出x的取值范围.(2)试判断∠BEO与∠OEF的大小关系?并说明理由.(3)在三角板绕O点旋转的过程中,△OEF能否成为等腰三角形?若能,求出对应x的值;若不能,请说明理由.
10.(2006•聊城)如图,在等腰Rt△ABC中,P是斜边BC的中点,以P为顶点的直角的两边分别与边AB,AC交于点E,F,连接EF.当∠EPF绕顶点P旋转时(点E不与A,B重合),△PEF也始终是等腰直角三角形,请你说明理由.
11.(2012•常德模拟)如图点P在线段AB上,⊙P与x轴相切于D点,且与线段AO相切于C点,已知A、B两点的坐标分别是(8,6),(5,0),求:圆心P的坐标和⊙P的面积.
12.(2012•黄冈)某科技开发公司研制出一种新型的产品,每件产品的成本为2400元,销售单价定为3000元,在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10件时,每件按3000元销售;若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于2600元.(1)商家一次购买这种产品多少件时,销售单价恰好为2600元?(2)设商家一次购买这种产品x件,开发公司所获得的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围.(3)该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获得的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获得的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)
13.(2015•大庆模拟)已知抛物线y=x2+bx+c的顶点为P,与y轴交于点A,与直线OP交于点B.(1)如图1,若点P的横坐标为1,点B的坐标为(3,6),试确定抛物线的解析式;(2)在(1)的条件下,若点M是直线AB下方抛物线上的一点,且S△ABM=3,求点M的坐标;(3)如图2,若点P在第一象限,且PA=PO,过点P作PD⊥x轴于点D.将抛物线y=x2+bx+c平移,平移后的抛物线经过点A、D,该抛物线与x轴的另一个交点为C,请探究四边形OABC的形状,并说明理由.
展开阅读全文