收藏 分销(赏)

湖南省各市2012年中考数学分类解析-专题6-函数的图像与性质.doc

上传人:仙人****88 文档编号:7208821 上传时间:2024-12-27 格式:DOC 页数:25 大小:1.06MB
下载 相关 举报
湖南省各市2012年中考数学分类解析-专题6-函数的图像与性质.doc_第1页
第1页 / 共25页
湖南省各市2012年中考数学分类解析-专题6-函数的图像与性质.doc_第2页
第2页 / 共25页
湖南省各市2012年中考数学分类解析-专题6-函数的图像与性质.doc_第3页
第3页 / 共25页
湖南省各市2012年中考数学分类解析-专题6-函数的图像与性质.doc_第4页
第4页 / 共25页
湖南省各市2012年中考数学分类解析-专题6-函数的图像与性质.doc_第5页
第5页 / 共25页
点击查看更多>>
资源描述

1、湖南各市2012年中考数学试题分类解析汇编专题6:函数的图像与性质一、 选择题1. (2012湖南常德3分)对于函数,下列说法错误的是【 】 A. 它的图像分布在一、三象限 B. 它的图像既是轴对称图形又是中心对称图形 C. 当x0时,y的值随x的增大而增大 D. 当x”,“”或“=”)【答案】。【考点】一次函数图象上点的坐标特征。【分析】点P1(3,y1),P2(2,y2)在一次函数y=2x1的图象上,y1=231=5,y2=221=3。53,y1y2。5. (2012湖南衡阳3分)如图,反比例函数的图象经过点P,则k= 【答案】6。【考点】曲线上点的坐标与方程的关系。【分析】根据图象写出P

2、点坐标,根据点在曲线上,点的坐标满足方程的关系,把P点坐标代入反比例函数解析式中即可得到k的值:根据图象可得P(3,2),把P(3,2)代入反比例函数中得:k=xy=6。6. (2012湖南衡阳3分)如图,一次函数y=kx+b的图象与正比例函数y=2x的图象平行且经过点A(1,2),则kb= 【答案】8。【考点】两条直线平行问题,曲线上点的坐标与方程的关系。119281【分析】根据两条平行直线的解析式的k值相等求出k的值,然后把点A的坐标代入解析式求出b值,再代入代数式进行计算即可:y=kx+b的图象与正比例函数y=2x的图象平行,k=2。y=kx+b的图象经过点A(1,2),2+b=2,解得

3、b=4。kb=2(4)=8。7. (2012湖南株洲3分)一次函数y=x+2的图象不经过第 象限【答案】四。【考点】一次函数的性质。【分析】一次函数的图象有四种情况:当,时,函数的图象经过第一、二、三象限;当,时,函数的图象经过第一、三、四象限;当,时,函数的图象经过第一、二、四象限;当,时,函数的图象经过第二、三、四象限。 由题意得,函数y=x+2的,故它的图象经过第一、二、三象限,不经过第四象限。三、解答题1. (2012湖南长沙10分)在长株潭建设两型社会的过程中,为推进节能减排,发展低碳经济,我市某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备,进行该产品的生

4、产加工已知生产这种产品的成本价为每件20元经过市场调研发现,该产品的销售单价定在25元到30元之间较为合理,并且该产品的年销售量y(万件)与销售单价x(元)之间的函数关系式为:.(年获利=年销售收入生产成本投资成本)(1)当销售单价定为28元时,该产品的年销售量为多少万件?(2)求该公司第一年的年获利W(万元)与销售单价x(元)之间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最小亏损是多少?(3)第二年,该公司决定给希望工程捐款Z万元,该项捐款由两部分组成:一部分为10万元的固定捐款;另一部分则为每销售一件产品,就抽出一元钱作为捐款若除去第一年的最大

5、获利(或最小亏损)以及第二年的捐款后,到第二年年底,两年的总盈利不低于67.5万元,请你确定此时销售单价的范围【答案】解:(1)252830,把28代入y=40x得, y=12(万件)。答:当销售单价定为28元时,该产品的年销售量为12万件。(2)当 25x30时,W=(40x)(x20)25100=x2+60x925=(x30)225,当x=30时,W最大为25,即公司最少亏损25万。当30x35时,W=(250.5x)(x20)25100=x2+35x625=(x35)212.5,当x=35时,W最大为12.5,即公司最少亏损12.5万。综合,得,投资的第一年,公司亏损,最少亏损是12.5

6、万。答:投资的第一年,公司亏损,最少亏损是12.5万。(3)当 25x30时,W=(40x)(x201)12.510=x2+59x782.5,令W=67.5,则x2+59x782.5=67.5,化简得:x259x+850=0,解得 x1=25;x2=34。此时,当两年的总盈利不低于67.5万元,25x30;当30x35时,W=(250.5x)(x201)12.510=x2+35.5x547.5,令W=67.5,则x2+35.5x547.5=67.5,化简得:x271x+1230=0,解得x1=30;x2=41。此时,当两年的总盈利不低于67.5万元,30x35,综上所述,到第二年年底,两年的总

7、盈利不低于67.5万元,此时销售单价的范围是25x35。【考点】一、二次函数的应用。【分析】(1)因为252830,所以把28代入y=40x即可求出该产品的年销售量为多少万件。(2)由(1)中y于x的函数关系式和根据年获利=年销售收入生产成本投资成本,得到w和x的二次函数关系,再由x的取值范围不同分别讨论即可知道该公司是盈利还是亏损。 (3)由条件得到w和x在自变量x的不同取值范围的函数关系式,再分别令w=67.5,求出对应x的值,结合y于x的关系中的x取值范围即可确定此时销售单价的范围。2. (2012湖南益阳10分)已知:如图,抛物线y=a(x1)2+c与x轴交于点A和点B,将抛物线沿x轴

8、向上翻折,顶点P落在点P(1,3)处(1)求原抛物线的解析式;(2)学校举行班徽设计比赛,九年级5班的小明在解答此题时顿生灵感:过点P作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比(约等于0.618)请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:,结果可保留根号)【答案】解:(1)P与P(1,3)关于x轴对称,P点坐标为(1,3)。抛物线y=a(x1)2+c顶点是P(1,3),抛物线解析

9、式为y=a(x1)23。抛物线y=a(x1)23过点A,a(1)23=0,解得a=1。抛物线解析式为y=(x1)23,即y=x22x2。(2)CD平行x轴,P(1,3)在CD上,C、D两点纵坐标为3。由(x1)23=3,解得:。C、D两点的坐标分别为。CD=。“W”图案的高与宽(CD)的比=(或约等于0.6124)。【考点】二次函数的应用,翻折对称的性质,二次函数的性质,曲线上点的坐标与方程的关系。【分析】(1)利用P与P(1,3)关于x轴对称,得出P点坐标,利用待定系数法求出二次函数的解析式即可。(2)根据已知求出C,D两点坐标,从而得出“W”图案的高与宽(CD)的比。3. (2012湖南岳

10、阳8分)游泳池常需进行换水清洗,图中的折线表示的是游泳池换水清洗过程“排水清洗灌水”中水量y(m3)与时间t(min)之间的函数关系式(1)根据图中提供的信息,求整个换水清洗过程水量y(m3)与时间t(min)的函数解析式;(2)问:排水、清洗、灌水各花多少时间?【答案】解:(1)排水阶段:设解析式为:y=kt+b,图象经过(0,1500),(25,1000),解得:。排水阶段解析式为:y=20t+1500。清洗阶段:y=0。灌水阶段:设解析式为:y=at+c,图象经过(195,1000),(95,0),解得:。灌水阶段解析式为:y=10t950。(2)排水阶段解析式为:y=20t+1500,

11、令y=0,即0=20t+1500,解得:t=75。排水时间为75分钟。清洗时间为:9575=20(分钟),根据图象可以得出游泳池蓄水量为1500 m3,1500=10t950,解得:t=245。故灌水所用时间为:24595=150(分钟)。【考点】一次函数的应用,待定系数法,直线上点的坐标与方程的关系。【分析】(1)根据图象上点的坐标利用待定系数法分别得出排水阶段解析式,以及清洗阶段:y=0和灌水阶段解析式即可。(2)根据(1)中所求解析式,即可得出图象与x轴交点坐标,即可得出答案。4. (2012湖南岳阳10分)我们常见的炒菜锅和锅盖都是抛物线面,经过锅心和盖心的纵断面是两端抛物线组合而成的

12、封闭图形,不妨简称为“锅线”,锅口直径为6dm,锅深3dm,锅盖高1dm(锅口直径与锅盖直径视为相同),建立直接坐标系如图所示,如果把锅纵断面的抛物线的记为C1,把锅盖纵断面的抛物线记为C2(1)求C1和C2的解析式;(2)如图,过点B作直线BE:y=x1交C1于点E(2,),连接OE、BC,在x轴上求一点P,使以点P、B、C为顶点的PBC与BOE相似,求出P点的坐标;(3)如果(2)中的直线BE保持不变,抛物线C1或C2上是否存在一点Q,使得EBQ的面积最大?若存在,求出Q的坐标和EBQ面积的最大值;若不存在,请说明理由【答案】解:(1)抛物线C1、C2都过点A(3,0)、B(3,0),设它

13、们的解析式为:y=a(x3)(x+3)。抛物线C1还经过D(0,3),3=a(03)(0+3),解得a=。抛物线C1:y=(x3)(x+3),即y=x23(3x3)。抛物线C2还经过A(0,1),1=a(03)(0+3),a=抛物线C2:y=(x3)(x+3),即y=x2+1(3x3)。(2)直线BE:y=x1必过(0,1),CBO=EBO(tanCBO=tanEBO=)。由E点坐标可知:tanAOE,即AOECBO,它们的补角EOBCBx。若以点P、B、C为顶点的PBC与BOE相似,只需考虑两种情况:CBP1=EBO,且OB:BE=BP1:BC,由已知和勾股定理,得OB=3,BE=,BC=。

14、3:=BP1:,得:BP1=,OP1=OBBP1=。P1(,0)P2BC=EBO,且BC:BP2=OB:BE,即:BP2=3:,得:BP2=,OP2=BP2OB=。P2(,0)综上所述,符合条件的P点有:P1(,0)、P2(,0)。(3)如图,作直线l直线BE,设直线l:y=x+b。当直线l与抛物线C1只有一个交点时:x+b=x23,即:x2x(3b+9)=0。由=(1)24(3b+9)=0。得。此时,。该交点Q2()。过点Q2作Q2FBE于点F,则由BE:y=x1可用相似得Q2F的斜率为3,设Q2F:y=3xm。将Q2()代入,可得。Q2F:y=3x。联立BE和Q2F,解得。F()。Q2到直

15、线 BE:y=x1的距离Q2F:。当直线l与抛物线C2只有一个交点时:x+b=x2+1,即:x2+3x+9b9=0。由=324(9b9)=0。得。此时,。该交点Q1()。同上方法可得Q1到直线 BE:y=x1 的距离:。,符合条件的Q点为Q1()。EBQ的最大面积:。【考点】二次函数综合题,待定系数法,曲线上点的坐标与方程的关系,相似三角形的判定和性质,勾股定理,一元二次方程根的判别式,点到直线的距离,平行线的性质。【分析】(1)已知A、B、C、D四点坐标,利用待定系数法即可确定两函数的解析式。5. (2012湖南永州10分)如图所示,已知二次函数y=ax2+bx1(a0)的图象过点A(2,0

16、)和B(4,3),l为过点(0,2)且与x轴平行的直线,P(m,n)是该二次函数图象上的任意一点,过P作PHl,H为垂足(1)求二次函数y=ax2+bx1(a0)的解析式;(2)请直接写出使y0的对应的x的取值范围;(3)对应当m=0,m=2和m=4时,分别计算|PO|2和|PH|2的值由此观察其规律,并猜想一个结论,证明对于任意实数m,此结论成立;(4)试问是否存在实数m可使POH为正三角形?若存在,求出m的值;若不存在,请说明理由【答案】解:(1)二次函数y=ax2+bx1(a0)的图象过点A(2,0)和B(4,3),-,解得。二次函数的解析式为y=x21。(2)当2x2时y0。(3)当m

17、=0时,|PO|2=1,|PH|2=1;当m=2时,P点的坐标为(2,0),|PO|2=4,|PH|2=4;当m=4时,P点的坐标为(4,3),|PO|2=25,|PH|2=25。由此发现|PO|2=|PH|2。设P点坐标为(m,n),即n=m21|OP|2= m2+ n2,|PH|2=(n+2)2=n2+4n+4=n2+m2。对于任意实数m,|PO|2=|PH|2。(4)存在。由(3)知OP=PH,只要OH=OP成立,POH为正三角形。设P点坐标为(m,n),|OP|2= m2+ n2,|OH|2=4+ m2,由|OP|=|OH|得,m2+ n2=4+ m2,即n2=4,解得n=2。当n=2

18、时,n=m21不符合条件,当n=2时,由2=m21解得m=2。故当m=2时可使POH为正三角形【考点】二次函数综合题,曲线上点的坐标与方程的关系,二次函数的性质,勾股定理,等边三角形的判定。【分析】(1)根据二次函数y=ax2+bx1(a0)的图象过点A(2,0)和B(4,3),待定系数法求出a和b的值,抛物线的解析式即可求出。(2)令y=x21=0,解得x=2或x=2,由图象可知当2x2时y0。(3)分别求出当m=0,m=2和m=4时,分别计算|PO|2和|PH|2的值然后观察其规律,再进行证明。(4)由(3)知OP=OH,只要OH=OP成立,POH为正三角形,求出|OP|、|OH|含有m和

19、n的表达式,令两式相等,求出m和n的值。6. (2012湖南郴州6分)已知反比例函数的图象与直线y=2x相交于A(1,a),求这个反比例函数的解析式【答案】解:设反比例函数的解析式为(k0),把A(1,a)代入y=2x得a=2,则A点坐标为(1,2)。把A(1,2)代入得k=12=2。反比例函数的解析式为。【考点】反比例函数与一次函数的交点问题,待定系数法,曲线上点的坐标与方程的关系。【分析】设反比例函数的解析式为(k0),先把A(1,a)代入y=2x可得a=2,则可确定A点坐标为(1,2),然后把A(1,2)代入可计算出k的值,从而确定反比例函数的解析式。7. (2012湖南郴州10分)如图

20、,已知抛物线经过A(4,0),B(2,3),C(0,3)三点(1)求抛物线的解析式及对称轴(2)在抛物线的对称轴上找一点M,使得MA+MB的值最小,并求出点M的坐标(3)在抛物线上是否存在一点P,使得以点A、B、C、P四点为顶点所构成的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由【答案】解:(1)抛物线经过A(4,0),B(2,3),C(0,3)三点, ,解得。抛物线的解析式为:,其对称轴为:。(2)由B(2,3),C(0,3),且对称轴为x=1,可知点B、C是关于对称轴x=1的对称点。如图1所示,连接AC,交对称轴x=1于点M,连接MB,则MAMB=MAMC=AC,根据两点之

21、间线段最短可知此时MAMB的值最小。设直线AC的解析式为y=kxb,A(4,0),C(0,3), ,解得。直线AC的解析式为:y=x3。令x=1,得y= 。M点坐标为(1,)。(3)结论:存在。如图2所示,在抛物线上有两个点P满足题意:若BCAP1,此时梯形为ABCP1。由B(2,3),C(0,3),可知BCx轴,则x轴与抛物线的另一个交点P1即为所求。在中令y=0,解得x1=-2,x2=4。P1(2,0)。P1A=6,BC=2,P1ABC。四边形ABCP1为梯形。若ABCP2,此时梯形为ABCP2。设CP2与x轴交于点N,BCx轴,ABCP2,四边形ABCN为平行四边形。AN=BC=2。N(

22、2,0)。设直线CN的解析式为y=k1x+b1,则有: ,解得。直线CN的解析式为:y=x+3。点P2既在直线CN:y=x+3上,又在抛物线:上,x+3=,化简得:x26x=0,解得x1=0(舍去),x2=6。点P2横坐标为6,代入直线CN解析式求得纵坐标为6。P2(6,6)。ABCN,AB=CN,而CP2CN,CP2AB。四边形ABCP2为梯形。综上所述,在抛物线上存在点P,使得以点A、B、C、P四点为顶点所构成的四边形为梯形,点P的坐标为(2,0)或(6,6)。【考点】二次函数综合题,待定系数法,曲线上点的坐标与方程的关系,二次函数的性质,轴对称的性质,线段最短的性质,梯形的判定。【分析】

23、(1)已知抛物线上三点A、B、C的坐标,利用待定系数法即可求出抛物线的解析式,再由对称轴公式求出对称轴。(2)如图1所示,连接AC,则AC与对称轴的交点即为所求之M点;已知点A、C的坐标,利用待定系数法求出直线AC的解析式,从而求出点M的坐标。(3)根据梯形定义确定点P,如图2所示:若BCAP1,确定梯形ABCP1此时P1为抛物线与x轴的另一个交点,解一元二次方程即可求得点P1的坐标;若ABCP2,确定梯形ABCP2此时P2位于第四象限,先确定CP2与x轴交点N的坐标,然后求出直线CN的解析式,再联立抛物线与直线解析式求出点P2的坐标。8. (2012湖南郴州10分)阅读下列材料:我们知道,一

24、次函数y=kx+b的图象是一条直线,而y=kx+b经过恒等变形可化为直线的另一种表达形式:Ax+Bx+C=0(A、B、C是常数,且A、B不同时为0)如图1,点P(m,n)到直线l:Ax+By+C=0的距离(d)计算公式是:d= 例:求点P(1,2)到直线的距离d时,先将化为5x12y2=0,再由上述距离公式求得d= 解答下列问题:如图2,已知直线与x轴交于点A,与y轴交于点B,抛物线上的一点M(3,2)(1)求点M到直线AB的距离(2)抛物线上是否存在点P,使得PAB的面积最小?若存在,求出点P的坐标及PAB面积的最小值;若不存在,请说明理由【考点】新定义,二次函数的性质,曲线上点的坐标与方程

25、的关系,勾股定理。【分析】(1)按例求解即可。 (2)用二次函数的最值,求出点P到直线AB的距离最小值,即可求出答案。9. (2012湖南娄底10分)已知二次函数y=x2(m22)x2m的图象与x轴交于点A(x1,0)和点B(x2,0),x1x2,与y轴交于点C,且满足(1)求这个二次函数的解析式;(2)探究:在直线y=x+3上是否存在一点P,使四边形PACB为平行四边形?如果有,求出点P的坐标;如果没有,请说明理由【答案】解:(1)二次函数y=x2(m22)x2m的图象与x轴交于点A(x1,0)和点B(x2,0),x1x2,令y=0,即x2(m22)x2m=0 ,则有:x1+x2=m22,x

26、1x2=2m。,化简得到:m2+m2=0,解得m1=2,m2=1。当m=2时,方程为:x22x+4=0,其判别式=b24ac=120,此时抛物线与x轴没有交点,不符合题意,舍去;当m=1时,方程为:x2+x2=0,其判别式=b24ac=90,此时抛物线与x轴有两个不同的交点,符合题意。m=1。抛物线的解析式为y=x2+x2。(2)存在。理由如下:假设在直线y=x+3上是否存在一点P,使四边形PACB为平行四边形。如图所示,连接PAPBACBC,过点P作PDx轴于D点。抛物线y=x2+x2与x轴交于AB两点,与y轴交于C点,A(2,0),B(1,0),C(0,2)。OB=1,OC=2。PACB为

27、平行四边形,PABC,PA=BC。PAD=CBO,APD=OCB。在RtPAD与RtCBO中,PAD=CBO ,PA=BC,APD=OCB ,RtPADRtCBO(AAS)。PD=OC=2,即yP=2。直线解析式为y=x+3,xP=1。P(1,2)。在直线y=x+3上存在一点P,使四边形PACB为平行四边形,P点坐标为(1,2)。【考点】二次函数综合题,二次函数与x点问题,曲线图上点的坐标与方程的关系,一元二次方程根与系数的关系,平行四边形的性质,全等三角形的判定和性质。【分析】(1)欲求抛物线的解析式,关键是求得m的值根据题中所给关系式,利用一元二次方程根与系数的关系,可以求得m的值,从而问

28、题得到解决。注意:解答中求得两个m的值,需要进行检验,把不符合题意的m值舍去。(2)利用平行四边形的性质构造全等三角形,根据全等关系求得P点的纵坐标,从而得到P点的横坐标,从而求得P点坐标。10. (2012湖南株洲10分)如图,一次函数分别交y轴、x轴于A、B两点,抛物线y=x2+bx+c过A、B两点(1)求这个抛物线的解析式;(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N求当t取何值时,MN有最大值?最大值是多少?(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标【答案】解:(1)分别交y轴、x轴于A、B两点,A、B点的坐标为:A(0

29、,2),B(4,0)。将x=0,y=2代入y=x2+bx+c得c=2;将x=4,y=0代入y=x2+bx+c得0=16+4b+2,解得b=。抛物线解析式为:y=x2+x+2。(2)如图1,设MN交x轴于点E,则E(t,0),BE=4t。,ME=BEtanABO=(4t) =2t。又N点在抛物线上,且xN=t,yN=t2+t+2。当t=2时,MN有最大值4。(3)由(2)可知,A(0,2),M(2,1),N(2,5)如图2,以A、M、N、D为顶点作平行四边形,D点的可能位置有三种情形。(i)当D在y轴上时,设D的坐标为(0,a),由AD=MN,得|a2|=4,解得a1=6,a2=2,从而D为(0

30、,6)或D(0,2)。(ii)当D不在y轴上时,由图可知D为D1N与D2M的交点,由D1(0,6),N(2,5)易得D1N的方程为y=x+6;由D2(0,2),M(2,1)D2M的方程为y=x2。由两方程联立解得D为(4,4)。综上所述,所求的D点坐标为(0,6),(0,2)或(4,4)。【考点】二次函数综合题,待定系数法,曲线上点的坐标与方程的关系,二次函数的性质,锐角三角函数定义,平行四边形的判定和性质。【分析】(1)首先求得A、B点的坐标,然后利用待定系数法求抛物线的解析式。(2)求得线段MN的表达式,这个表达式是关于t的二次函数,利用二次函数的极值求线段MN的最大值。(3)明确D点的可

31、能位置有三种情形,如图2所示,不要遗漏其中D1、D2在y轴上,利用线段数量关系容易求得坐标;D3点在第一象限,是直线D1N和D2M的交点,利用直线解析式求得交点坐标。11. (2012湖南湘潭6分)已知一次函数y=kx+b(k0)图象过点(0,2),且与两坐标轴围成的三角形面积为2,求此一次函数的解析式【答案】解:一次函数y=kx+b(k0)图象过点(0,2),b=2。令y=0,则。函数图象与两坐标轴围成的三角形面积为2,即。当k0时,=2,解得k=1;当k0时,=2,解得k=1。此函数的解析式为:y=x+2或y=x+2。【考点】待定系数法求一次函数解析式。【分析】先根据一次函数y=kx+b(

32、k0)图象过点(0,2)可知b=0,再用k表示出函数图象与x轴的交点,利用三角形的面积公式求解即可。12. (2012湖南湘潭10分)如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0)(1)求抛物线的解析式;(2)试探究ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求MBC的面积的最大值,并求出此时M点的坐标【考点】二次函数综合题,待定系数法,曲线上点的坐标与方程的关系,相似三角形的判定和性质,圆周角定理,一元二次方程根的判别式,解方程和方程组。【分析】(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可。(2)根据抛物线的解析式确定A点坐标,然后通过证明ABC是直角三角形来推导出直径AB和圆心的位置,由此确定圆心坐标。(3)MBC的面积可由表示,若要它的面积最大,需要使h取最大值,即点M到直线BC的距离最大,若设一条平行于BC的直线,那么当该直线与抛物线有且只有一个交点时,该交点就是点M。25用心 爱心 专心

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 考试专区 > 中考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服