收藏 分销(赏)

全面解析汽车制动系.doc

上传人:pc****0 文档编号:7188876 上传时间:2024-12-27 格式:DOC 页数:66 大小:1.41MB
下载 相关 举报
全面解析汽车制动系.doc_第1页
第1页 / 共66页
全面解析汽车制动系.doc_第2页
第2页 / 共66页
全面解析汽车制动系.doc_第3页
第3页 / 共66页
全面解析汽车制动系.doc_第4页
第4页 / 共66页
全面解析汽车制动系.doc_第5页
第5页 / 共66页
点击查看更多>>
资源描述

1、制动系的定义及功用1、制动系定义:汽车制动系是指在汽车上设置的一套(或多套)能由驾驶员控制定、产生与汽车行驶方向相反外力的装置。2、制动系功用:使行驶中的汽车按照驾驶员的要求进行适时的减速、停车或驻车,以及保持汽车下坡行驶速度的稳定性。简单刹车系运行动画制动系的组成 任何制动系都由以下4部分组成(1)供能装置:包括供给、调节制动所需能量以及改善传能介质状态的各种部件。如人的肌体可作制动能源。(2)控制装置:包括产生制动动作和控制制动效果的各种部件。如制动踏板。(3)传动装置:包括将制动能量传输到制动器的各个部件及管路。如制动主缸、轮缸及连接管路。(4)制动器:产生阻碍车辆运动或运动趋势的力的部

2、件。 制动系的分类(1)汽车制动系按功用可分为行车制动系、驻车制动系、第二制动系、辅助制动系。行车制动系是使行驶中的汽车减速甚至停车的一套专门装置,在行车过程中经常使用。第二制动系是在行车制动系失效的情况下保证汽车仍能实现减速或停车的一套装置。辅助制动系是在汽车下长坡时用以稳定车速的一套装置。行车制动系和驻车制动系作为每辆汽车制动系的最低装备,只有部分汽车还设有辅助制动系和第二制动系。(2)按制动能源可分为人力制动系、动力制动系、伺服制动系。(3)按制动能量传输方式,制动系可分为机械式、液压式和气压式等。制动系工作原理制动系基本结构(1)基本结构:如上图所示,制动鼓固定在轮毂上并随车轮一起旋转

3、,其内圆柱面为工作表面。 (2)制动作用的产生不制动时,制动鼓的内圆柱面与摩擦片之间保留一定的间隙,使制动鼓可以随车轮一起旋转;制动时,驾驶员踩下制动踏板,推杆便推动制动主缸活塞,迫使制动油液经油管进入制动轮缸,油液压力使制动轮缸活塞克服复位弹簧的拉力推动制动蹄绕支撑销传动,上端向外张开,消除制动蹄与制动鼓之间的间隙后压紧在制动鼓上,这样不旋转的制动蹄摩擦片对旋转着的制动鼓就产生一个摩擦力矩,其方向与车轮旋转方向相反,其大小取决于制动轮缸活塞的张开力、制动蹄鼓间的摩擦系数及制动鼓和制动蹄的尺寸。放松制动踏板,在复位弹簧作用下,制动蹄与制动鼓的间隙又得以恢复,从而解除制动。对制动系的基本要求(1

4、)具有良好的制动性能,包括制动效能、制动效能的恒定性、制动时的方向稳定性3个方面;(2)操纵轻便(3)制动平顺性好:制动力矩能迅速而平稳的增加,也能迅速而彻底的解除。(4)对有挂车的制动系,还要求挂车的制动作用略早于主车;挂车自行脱钩时能自动进行应急制动。制 动 器制动器分类 1、各类汽车所用的摩擦制动器可分为鼓式和盘式两大类。鼓式的摩擦副中的旋转元件为制动鼓,工作面为圆柱面;后者的旋转元件为圆盘状的制动盘,工作面为圆盘端面。碟刹盘上无鼓的鼓刹盘上有鼓的鼓刹2、制动力作用于两侧车轮上的制动器称为车轮制动器;旋转元件固装在传动系的传动轴上,其制动力矩必须经过驱动桥再分配到两侧车轮上的制动器称为中

5、央制动器。3、车轮制动器一般用于行车制动,部分汽车的后轮制动器兼用于驻车制动,中央制动器一般只用于驻车制动。鼓式车轮制动器鼓式制动器结构和原理1、鼓式车轮制动器分类1)按张开机构不同,可分为轮缸式车轮制动器、凸轮式车轮制动器和楔式车轮制动器。2)根据制动过程中两制动蹄产生制动力矩的不同,可分为领从蹄式、双领蹄式、双向双领蹄式、双从蹄式、单向自增力式和双向自增力式等。2、领从蹄式制动器1)基本结构及原理领从蹄式鼓式刹车动画领从蹄式制动器车轮制动器的基本组成包括固定部分、旋转部分、张开机构、定位调整机构四大部分。如上图所示,两制动中蹄的支撑点都位于蹄的一端,两支撑点都位于蹄的一端,两支撑点与张开力

6、作用点的布置都是轴对称式;轮缸中两活塞的直径相等。在制动过程中,领蹄上的切向合力的作用结果使领蹄在制动鼓上压得更紧,表明领蹄具有“增势”作用;而从蹄具有“减势”作用。一般情况下领蹄产生的制动力矩约为从蹄制动力矩的22.5倍。倒车制动时,制动鼓旋转方向相反,后蹄变成领蹄,前蹄变成从蹄,但整个制动器的制动效能还是同前进时一样。领从蹄式制动器存在两个问题:其一是在两蹄摩擦片工作面积相等的情况下,由于领蹄与从蹄所受法向反力不等,领蹄摩擦片上的单位压力较大,因而磨损较严重,两蹄寿命不等。其二是由于制动蹄对制动鼓施加的法向力不相平衡,则两蹄法向力之和只能由车轮轮毂轴承的反力来平衡,这对轮毂轴承造成了附加径

7、向载荷,使其寿命缩短。这种制动器称为非平衡式制动器。2)典型结构下图为桑塔纳车后轮制动器结构桑塔纳车后轮制动器结构固定部分为制动底板和制动蹄、旋转部分为制动鼓、张开机构主要为轮缸,用螺钉固定在制动底板上、定位调整机构是一套自动调整机构。制动底板用螺栓固定在后桥轴端支撑座上,制动轮缸用螺钉固定在制动底板上方。制动蹄采用了浮式支撑,制动蹄稳定销、稳定弹簧及弹簧座将制动蹄紧压在制动底板的带储油孔的支撑平面上,防止制动蹄轴向窜动。制动蹄的两端做成圆弧形,制动蹄复位弹簧分别将两个制动蹄上端贴靠在制动轮缸左右活塞带耳槽的支撑块上,下端贴靠在制动底板上的支撑座上,并用止挡板轴向限位,制动蹄可以沿支撑座和轮缸

8、活塞的支撑块作一定的浮动。制动蹄可以自动定心,以保证与制动鼓全面接触。前制动蹄上固定有斜楔支撑,用来支撑调节用的楔形调节块。摩擦衬片用空心铆钉与制动蹄铆接在一起。驻车制动杠杆上端用平头销与后制动蹄相连,其上部卡入驻车制动推杆右端的切槽中,作为中间支点,下端做成钩形,与驻车制动钢索相连。后轮制动器的制动间隙是自动调整的,在装配时不需要调整间隙,只需在安装到汽车上后经过一次完全制动,即可以将间隙调整到设定值。3、双领蹄式制动器双领蹄式鼓式刹车动画在汽车前进时,两蹄均为领蹄的制动器称为双领蹄式制动器。其结构特点是两个制动蹄各用一个单活塞的轮缸,且两套制动蹄、制动轮缸、偏心支撑销和调整凸轮等在制动底板

9、上的布置是中心对称的。实训室的柳微汽车前轮制动器属于双领蹄式制动器。下图为双领蹄式制动器示意图。双领蹄式制动器示意图北京BJ2020S型汽车的前轮制动器也属于双领蹄式制动器,如下图所示。北京BJ2020S型汽车的前轮制动器也属于双领蹄式制动器两制动蹄各用一个单活塞式轮缸,且两套制动蹄、轮缸、支撑销和调整凸轮等在制动底板上的布置是中心对称的,两个轮缸通过连接油管连通,使其中油压相等。在前进制动时,两蹄都是领蹄,制动器的效能得到提高,但在倒车制动时,两蹄均是从蹄,制动器的制效能降低。4、自增力式制动器单向自增力式制动器自增力式制动器可分为单向和双向两种。单向自增力式制动器只在前进方向起增力作用,而

10、在倒车制动时制动效能还不及双从蹄式制动器。双向自增力式制动器在车轮正向和反向旋转时均能借助制动蹄与制动鼓的摩擦起自动增力作用。自增力式制动器两制动蹄浮动支撑在制动底板上,下端以浮动的可调推杆连接,上端在复位弹簧拉紧力作用下靠紧固定在制动底板上的支撑销。汽车前进制动时,轮缸活塞在两蹄上施加大小相等、方向相反的张开力,使两制动蹄向外张开压制动鼓,当制动蹄与旋转的制动鼓接触后,在摩擦力矩作用下制动鼓带动两蹄沿旋转方向转动,直到后蹄顶靠到支撑销上为止,然后蹄与鼓进一步压紧。此时后蹄处于增力状态,因为后蹄的压紧力包括轮缸的张开力和前蹄对后蹄的推力,且由于前蹄的助势作用,经浮动的推杆施于后蹄下端的推力S比

11、张开力F大23倍。倒车制动时作用过程相反,作用原理相同,后蹄为助势蹄,前蹄起增力作用。故称这种制动器为双向自增力式制动器。盘式车轮制动器 1、盘式制动器摩擦副中的旋转元件为以端面为工作面的金属圆盘,称为制动盘。盘式制动器结构和原理2、定钳盘式制动器如下图所示:制动钳体通过导向销与车桥相连,可以相对于制动盘轴向移动,制动钳只在制动盘的内侧设置油缸,而外侧的制动块附装在钳体上,制动时,来自制动主缸的液压油通过进油口进入制动油缸,推动活塞及其上的制动块向右移动,并压到制动盘,于是制动盘给活塞一个向左的反作用力,使得活塞连同制动钳体整体沿导销向左移动,直到制动盘右侧的制动块也压紧在制动盘上,此时两侧的

12、制动块都压在制动盘上,夹住制动盘使其制动。定钳盘式制动器定钳盘式制动器3、典型浮钳盘式制动器浮钳盘式制动器如下图所示为桑塔纳轿车前轮制动器。桑塔纳轿车前轮制动器制动钳体用螺栓与支架相连,螺栓同时兼作导向销,支架固定在前悬架总成轮毂轴承座凸缘上。壳体可沿导各销与支架作轴向相对移动,两制动块装在支架上,用保持弹簧卡住,使两制动块可以在支架上作轴向移动,但不会上下窜动。制动盘装在两制动块之间,并通过轮胎螺栓固定在前轮毂上,制动块由无石棉的活塞在制动液压力作用下,推动内制动块压向制动盘内侧,制动钳上的反力使制动钳壳体向内侧移动,从而带动外制动块压向制动盘外侧面。于是内、外摩擦块将制动盘的两端面紧紧夹住

13、,实现了制动。4、制动间隙自调结构利用活塞矩形密封圈的弹性变形实现制动间隙的自动调整。制动间隙自调结构矩形密封圈嵌在制动钳油缸的矩形槽内,密封圈刃边与活塞外圆配合较紧,制动时刃边在摩擦作用下随活塞移动,使密封圈发生弹性变形,相应于极限摩擦力的密封圈极限变形量应等于制动器间隙为设定值时完全制动所需的活塞行程,解除制动时,密封圈恢复变形,活塞在密封圈弹力作用下退回原位,当制动盘与摩擦衬块磨损后引起的制动间隙超过设定值时,则制动时活塞密封圈变形量达到极限值后,活塞仍可在液压作用下,克服密封圈的摩擦力而继续移动,直到实现完全制动为止。解除制动后,制动器间隙即恢复到设定值,因活塞密封将活塞拉回的距离仍然

14、等于原设定值,活塞密封圈兼起活塞复位弹簧和一次调准式间隙自调装置的作用。5、制动块磨损报警装置许多盘式制动器上装有制动块摩擦片磨损报警装置,用来提配驾驶员制动块上的摩擦片需要更换。下图为应用较广泛的声音式制动块磨损损装置。制动块磨损报警装置在制动摩擦块的背板上装有一小弹簧片,其端部到制动盘的距离刚好为摩擦片的磨损极限,当摩擦片磨损到需更换时,弹簧片与制动盘接触发出刺耳的尖叫声,警告驾驶员需要维修制动系统。盘式制动器的特点盘式制动器与鼓式制动器相比较,有以下优点:1)制动盘暴露在空气中,散热能力强。特别是采用通风式制动盘,空气可以流经内部,加强散热;2)浸水后制动效能降低较少,而且只须经一两次制

15、动即可恢复正常;3)制动效能较稳定、平顺性好;4)制动盘沿厚度方向的热膨胀量极小,不会象制动鼓的热膨胀那样使制动器间隙明显增加而导致制动踏板行程过大。此外也便于装设间隙自调装置;5)结构简单,摩擦片安装更换容易,维修方便。盘式制动器的缺点1)因制动时无助势作用,故要求管路液压比鼓式制动器高,一般要用伺服装置和采用较大直径的油缸;2)防污性能差,制动块摩擦面积小,磨损较快;3)兼用于驻车制动时,需要加装的驻车制动传动装置较鼓式制动器复杂,因而在后轮上的应用受到限制。驻车制动装置驻车制动装置作用是使停驶后的汽车驻留原地不动;便于坡道起步;当行车制动效能失效后临时使用或配合行车制动器进行紧急制动。驻

16、车制动装置按其安装位置可分为中央制动式和车轮制动式两种。前者的制动器安装在变速器的后面,制动力矩作用在传动轴上;后者与车轮制动器共用一个制动器总成,只是传动机构是相互独立的。1、中央制动式驻车制动装置1)自动增力式。如下图所示,制动器制动鼓与变速器第二轴的凸缘盘连接,随第二轴转动。制动底板通过四颗螺栓固定在变速器外壳上。间隙调整螺栓、螺母、调整套组合成一长度可调的推杆。两制动蹄通过稳定销、稳定弹簧、弹簧座浮动支承在制动底板上,两制动蹄上端在两拉簧的作用下靠紧支承销,下端辐板卡在可调推杆两端的凹槽内,并用拉簧拉紧。驻车制动臂上端与右蹄通过销轴铰接,并通过推板和左蹄靠接,臂的下端与驻车制动钢丝绳连

17、接。制动手柄通过钢丝绳和摇臂等与制动器软连接传力,绳的松紧可用螺母调整。制动时,将手柄拉出,使制动臂以销轴为支点顺时针转动,通过推力板将左蹄压向制动鼓,随后制动臂的上端右移,使右蹄也压向制动鼓,产生制动作用。自动增力过程同前述车轮制动器。当棘齿拉杆在全制动位置时,棘爪即在扭簧的作用下将拉杆锁止。中央制动式驻车制动装置放松制动时,应将手柄和棘齿拉杆顺时针转动一个角度,使棘爪脱离啮合,再将手柄推回到不制动位置,并转回一定角度,以便下次制动。驻车制动指示灯开关在全制动位置导通指示灯,以提醒驾驶员制动未解除,不能起步。当制动摩擦片磨损后,蹄鼓间隙增大,可转动间隙调整螺母使间隙减小。传动件中尚有调整螺母

18、,用来调整绳的松紧。要求棘齿拉杆拉出511个牙齿时,驻车制动器处于全制动状态。2)凸轮张开式。凸轮张开式中央制动器,结构与前述凸轮张开的车轮制动器相同。2、车轮制动式驻车制动装置车轮制动式驻车制动装置根据制动器类型有鼓式和盘式两大类,鼓式车轮制动式驻车制动装置前已述及,此处仅介绍在盘式车轮制动器上布置的驻车制动装置。1)凸轮促动式驻车制动装置。如下图所示为一种带凸轮促动机构的盘式制动器的浮式制动钳。自调螺杆穿过制动钳体的孔旋装在切有粗牙螺纹的自调螺母中,螺母凸缘的左边部分被扭簧紧箍着。扭簧的一端固定在活塞上,而另一端则自由地抵靠螺母凸缘。推力球轴承固定在螺母凸缘的右侧,并被固定在活塞上的挡片封

19、闭。轴承与挡片之间的装配间隙即等于制动器间隙为标准值时完全制动所需的活塞行程。膜片弹簧使螺杆右端斜面与驻车制动杠杆的凸轮斜面始终贴合。凸轮促动式驻车制动装置施行驻车制动时,在驻车制动杠杆的凸轮推动下,自调螺杆连同自调螺母一直左移到螺母接触活塞的底部。此时,由于扭簧的障碍,自调螺母不可能倒转着相对于螺杆向右移动,于是轴向推力便通过活塞传到制动块上而实现制动。解除驻车制动时,自调螺杆在膜片弹簧的作用下,随着驻车制动杠杆回位。制动间隙的自动调整。在制动间隙大于标准值的情况下实行行车制动时,活塞在液压作用下左移。到挡片与轴承间的间隙消失后,活塞所受液压推力便通过推力轴承作用在自调螺母凸缘上。因为自调螺

20、杆受凸轮斜面和膜片弹簧的限制,不能转动,也不能轴向移动,所以这一轴向推力便迫使自调螺母转动,并且随活塞相对于螺杆左移到制动器过量间隙消失为止。此时扭簧张开,且其螺圈直径略有增大。撤除液压后,活塞密封圈使活塞退回到制动器间隙等于标准值的位置,而扭簧的自由端则由于所受摩擦力矩的消失而转回原位。这样,自调螺母保持在制动前的轴向位置不动,从而保证了挡片与推力轴承之间的间隙为原值。2)钢球促动式驻车制动机构。驻车制动杠杆用螺栓固定在凸缘短轴上,凸缘短轴和凸缘螺杆的凸缘端面上各有三个倾斜凹坑,二者通过凹坑中的钢球传力,凸缘螺杆通过粗牙螺纹拧在活塞组件的螺母上。进行驻车制动时,拉绳拉动驻车制动杠杆摆动,凸缘

21、短轴也随之转动,于是钢球在倾斜凹坑内滚动,同时推动凸缘螺杆带动活塞组件移动,压向制动盘实现制动。制动供能、控制、传动装置人力制动系人力制动系的制动能源仅仅是驾驶员的肌体。按其传动装置的结构形式,人力制动系有机械式和液压式两种。1、人力机械式制动系人力机械式制动系人力机械式制动系通常用于汽车的驻车制动,包括传动机构和锁止机构,传动机构由驻车制动杆、拉杆、调整拉杆及驻车制动拉绳组成。改变拉杆和调整拉杆之间的相对位置可以调整驻车制动杆的工作行程。2、人力液压式制动系1)基本组成和原理。如下图所示,人力液压式制动系以制动液为介质,将驾驶员施加的控制力通过装在车架上的主缸由机械能转换为液压能,再通过装在

22、车轮制动器内的轮缸将液压能转换为机械能,促使制动器进入工作状态。人力液压式制动系制动踏板机构和制动主缸都装在车架上。因车轮是通过弹性悬架与车架联系的,而且有的还是转向轮,主缸与轮缸的相对位置经常变化,故主缸与轮缸间的连接油管除金属管(铜管)外,还有特制的橡胶制动软管。各液压元件之间及各段油管之间还有各种管接头。踩下制动踏板,制动主缸即将制动液经油管压人前、后制动轮缸,将制动蹄推向制动鼓。在制动器间隙消失之前,管路中的液压不可能很高,仅足以平衡制动蹄复位弹簧的张力以及油液在管路中的流动阻力。在制动器间隙消失并开始产生制动力矩时,液压与踏板力方能继续增长,直到完全制动。从开始制动到完全制动的过程中

23、,由于在液压作用下,油管(主要是橡胶软管)的弹性膨胀变形和摩擦元件的弹性压缩变形,踏板和轮缸活塞都可以继续移动一段距离。放开制动踏板,制动蹄和轮缸活塞在复位弹簧作用下复位,将制动液压回主缸。显然,管路液压和制动器产生的制动力矩是与踏板力成线性关系的。若轮胎与路面间的附着力足够,则汽车所受到的制动力也与踏板力成线性关系。制动系的这项性能称为制动踏板感(或称路感),驾驶员可因此而直接感觉到汽车制动强度;以便及时加以必要的控制和调节。液压系统中若有空气侵人,将严重影响液压的升高,甚至使液压系统完全失效。因此在结构上必须采取措施以防止空气侵入,并便于将已侵入的空气排出。为了提高汽车行驶的安全性,并根据

24、交通法规的要求,现代汽车的行车制动系都采用了双回路制动系。目前采用双回路液压制动系的几乎都是伺服制动系或动力制动系。但是,在某些微型或轻型汽车上,为使结构简单,仍采用双回路人力液压制动系。双回路是指利用彼此独立的双腔制动主缸,通过两套独立管路,分别控制两桥或三桥的车轮制动器,其特点是若其中一套管路发生故障而失效时,另一套管路仍能继续起制动作用,从而提高了汽车制动的可靠性和行驶安全性。双管路的布置方案应用较为广泛的有一轴对一轴型()和交叉(X)型。不制动时,推杆球头端与活塞之间保留有一定的间隙,以保证活塞在弹簧的作用下完全回复到最右端位置,前、后两工作腔内的活塞头部与皮碗正好位于前、后腔内各自的

25、旁通孔和补偿孔之间。制动时,为了消除推杆球头与活塞之间的间隙所需的踏板行程,称为制动踏板自由行程。当踩下制动踏板时,踏板传动机构通过推杆推动后腔(第一)活塞前移,到皮碗掩盖住旁通孔后,此腔液压升高。在后腔液压和后腔活塞回位弹簧力的作用下,推动前腔缸活塞向前移动,前腔压力也随之升高。当继续下踩制动踏板时,前、后腔的液压继续升高,使前、后轮制动器制动。解除踏板力后,制动踏板机构、主缸前后腔活塞和轮缸活塞,在各自的复位弹簧作用下回位,管路中的制动液借其压力推开回油阀门流回主缸。于是解除制动。当迅速放开制动踏板时,由于油液的粘性和管路阻力的影响,油液不能及时流回主缸并填充因活塞右移而让出的空间,因而在

26、旁通孔开启之前,压油腔中产生一定的真空度。此时进油腔液压高于压油腔,因而进油腔的油液便从前、后腔活塞的前密封皮碗的边缘与缸壁间的间隙流人各自的压油腔以填补真空。与此同时储液室中的油液经补偿孔流人各自的进油腔。活塞完全复位后,旁通孔已开放,由制动管路继续流回主缸而显多余的油液便可经前、后腔的旁通孔流回储液室。液压系统中因密封不良而产生的制动液漏泄及因温度变化而引起的制动液膨胀或收缩,都可以通过补偿孔和旁通孔得到补偿。当制动器间隙过大或液压系统进入空气,致使踏板踩到极限位置仍感到制动力不足时,可迅速放松踏随即再踩下,如此反复几次,使压入管路中的油液增多,油压升高,以进一步加大制动力。若与前腔连接的

27、制动管路损坏漏油时,则在踩下制动踏板时只后腔中能建立液压,前腔中无压力。此时在液压差作用下,前腔活塞迅速前移到前缸活塞前端顶到主缸缸体上。此后,后腔工作腔中液压方能升高到制动所需的值。若与后腔连接的制动管路损坏漏油时,则在踩下制动踏板时,起先只是后腔(第一)活塞前移,而不能推动前腔(第二)活塞,因后缸工作腔中不能建立液压。但在后缸活塞直接顶触前缸活塞时,前缸活塞前移,使前缸工作腔建立必要的液压而制动。由上述可见,双回路液压制动系统中任一回路失效时,主缸仍能工作,只是所需踏板行程加大,将导致汽车的制动距离增长,制动效能降低。2)制动轮缸。制动轮缸,又称制动分泵,其作用是把油液压力转变为轮缸(轮缸

28、)活塞的推力,推动制动蹄压靠在制动鼓上,产生制动作用。制动轮缸有双活塞式和单活塞式两种。双活塞式制动轮缸如上图所示为双活塞式,缸体用螺栓固定在制动底板上,缸内有两个活塞,二者之间的内腔由两个皮碗密封。制动时,制动液自油管接头和进油孔进入,活塞在液压力作用下向外移动,通过顶块推动制动蹄。弹簧保证皮碗、活塞、制动蹄紧密接触,并保持两活塞之间的进油间隙。防护罩除防尘外,还可防止水分进入,以免活塞和轮缸生锈而卡住。在轮缸缸体上方还装有放气阀,以便放出液压系统中的空气。单活塞式制动轮缸。为缩小轴向尺寸,液压腔密封件不用抵靠活塞端面的皮碗,而采用装在活塞导向面上切槽内的皮圈,进油间隙靠活塞端面的凸台保持。

29、放气阀的中部有螺纹,尾部有密封锥面,平时旋紧压靠在阀座上。与密封锥面相连的圆柱面两侧有径向孔,与阀中心的轴向孔相通。需要放气时,先取下橡胶护罩,再连踩几下制动踏板,对缸内空气加压,然后踩下制动踏板不动将放气阀旋出少许,空气即可排出,待空气排出将放气阀旋闭后再放松制动踏板。如此反复直到空气排尽。如下图所示。单活塞式制动轮缸3)制动液:(1)使用要求。制动液是液压制动系的重要组成部分,其质量好环对制动系的工作可靠性影响很大,性能要求如下: 有高的沸点,高温下不易汽化,否则易产生气阻,使制动系失效; 低温下有良好的流动性; 不会使与之经常接触的金属件腐蚀,橡胶件膨胀、变硬和损坏; 良好的润滑作用;

30、吸水性差而溶水性好。(2)制动液的标准。为保证汽车行驶安全,各国不断制定、修定汽车制动液标准。国外汽车制动液标准国外汽车制动液有代表性的标准是美国联邦政府运输安全部(DOT)制定的联邦机动车辆安全标准(FMVSS),具体是FMVSSNO.116 DOT3,DOT4,DOT5,这是世界公认的汽车制动液通用标准。我国汽车制动液标准我国汽车制动液标准有GB10836l998机动车制动液使用技术条件和GB129811991HZY2、HZY3、HZY4合成制动液。汽车制动液使用技术条件分为JG3、JG4、JG5三级。JG为交通部、公安部系列,J为交通部第一个汉字的汉语拼音首字母,G为公安部第一个汉字的汉

31、语拼音首字母。(3)制动液的选用:汽车制动液的选择:汽车制动液的选择应坚持两条原则:一是选择合成制动液;二是质量等级以FMSSNo116DOT标准为准。按照GB10836l998机动车制动液使用技术条件,各级制动液主要特性和推荐使用范围见表9-1。捷达、切诺基、奥迪A6等汽车采用DOT4型制动液。表9-1JG系列汽车制动液的主要性能及推荐使用范围制动液的使用:制动液的更换以汽车的行驶里程或时间确定,一般行驶里程超过3万公里或时间超过两年需更换。汽车制动液使用应注意下列事项:不同规格的制动液不能混用;防止水分或矿物油混入;制动缸橡胶皮碗不可长时间暴露放置在空气中;汽车制动液多以有机溶剂制成,易挥

32、发、易燃,因此,管理和使用中要注意防火;避免制动液进入眼睛;避免制动液溢洒到漆膜表面,若出现该种情况立即用冷水冲洗。伺服制动系伺服制动系兼用人体和发动机作为制动能源,在正常情况下,制动能量大部分由动力伺服系统供给,可以减轻驾驶员施加于制动踏板上的力,增加车轮制动力,达到操纵轻便、制动可靠的目的。在动力伺服系统失效时,伺服制动转变为人力制动。常见伺服制动系以发动机工作时在进气管中形成的真空(或利用真空泵产生的真空)为伺服能量。它可分为增压式和助力式两种型式。增压式是通过增压器将制动主缸的液压进一步增加,增压器装在主缸之后;助力式是通过助力器来帮助制动踏板对制动主缸产生推力,助力器装在踏板与主缸之

33、间。1、真空增压式液压制动传动装置下图所示为跃进NJ1061A型汽车装用的真空增压式液压制动传动装置。它比普通液压制动传动装置多装了一套真空增压系统,由发动机进气管(真空源)、真空单向阀、真空筒组成的供能装置,控制装置的控制阀,传动装置的加力气室及辅助缸等组成。真空增压式液压制动传动装置发动机工作时,在进气歧管中的真空度作用下,真空筒中的空气经真空单向阀吸入发动机,使筒中产生一定的真空度,作为制动伺服的能源(柴油发动机因进气管的真空度不高,需另装一真空泵作为真空源)。单向阀的作用是:当进气管(或真空泵)的真空度高于真空筒的真空度时,单向阀被吸开,将真空筒及加力气室内的空气抽出;当发动机熄火或因

34、工况变化以致使进气管的真空度低于真空筒的真空度时,单向阀即关闭,以保持真空筒及加力气室的真空度。踩下制动踏板时,制动主缸输出的制动油液先进人辅助缸,由此一方面传入前后制动轮缸,另一方面又作为控制压力输入控制阀,控制阀使真空加力气室起作用,这样气室输出的力与主缸传来的液压一同作用于辅助缸活塞上,使辅助缸输送至轮缸的液压变得远高于主缸液压。国产66-型真空增压器。它由加力气室、辅助缸和控制阀三部分组成。加力气室:把进气管(或真空泵)产生的真空度与大气压力的压力差,转变为机械推力。壳体是钢板冲压件,前壳体用螺钉与辅助缸体的后端相连,其间有连接块和密封垫圈。膜片的外缘装在用卡箍夹紧的壳体之间,中部经托

35、盘等件与推杆紧固在一起,不制动时膜片在回位弹簧作用下处于最右端位置。膜片左腔C有孔管经单向阀与发动机的进气管相通,经由辅助缸体中的孔道与控制阀下气室B相通;其右腔室D经通气管与控制阀上腔A相通。辅助缸:把低压油变成高压油。装有皮圈的活塞把辅助缸体分成两部分:左腔经出油管接头通向前后制动轮缸;右腔经进油接头通向制动主缸的出油口。活塞的中部有小孔而保持左、右腔在不制动时连通,加力气室不工作时回位弹簧使活塞靠在活塞限位座的右极限位置。前端嵌装球阀的推杆用来推动活塞移动,杆的后端与加力气室膜片连接。密封圈起密封和导向作用。控制阀:是控制加力气室起作用的随动控制机构。膜片的中部紧固在膜片座上,装有皮圈的

36、控制活塞与座固装在一起,活塞处于与辅助缸右腔相通的孔中。真空阀和空气阀刚性地连接在一起,阀门弹簧在不制动时使空气阀关闭,膜片回位弹簧则使膜片保持在真空阀开启的下方位置。膜片座中央有孔道使气室A和气室B相通,因此,不制动时四个气室A、B、C和D相通且真空度相等。踩下制动踏板时,制动主缸中的制动液即被压人辅助缸,因此时球阀还是开启的,故液压油经活塞上的孔进入各制动轮缸,轮缸液压即等于主缸液压。与此同时,液压还作用在控制阀活塞上,并通过膜片座压缩弹簧,使真空阀的开度逐渐减小,直至关闭,气室A和B即隔绝,这时的控制液压还不足以使空气阀开启,膜片还未开始工作,即所谓增压滞后。随着控制液压升高,液压使膜片

37、座继续升起,压缩阀门弹簧打开空气阀,由空气滤清器进入的空气即进入气室A和D。此时,气室B和G的真空度仍保持原值不变,在D、C两气室压力差作用下,膜片带动推杆左移,使球阀关闭。这样,制动主缸便与辅助缸左腔隔绝,辅助缸内的油液即增加了一个由加力气室膜片两侧气压差造成并经推杆传来的推动力。所以在辅助缸左腔及各轮缸中的压力远高于制动主缸的压力。制动踏板在某一位置不动(即维持制动状态)时,随着进入气室空气量的增加,A和B气室的压力差加大,对膜片产生向下的压力,因而膜片座及活塞随之下移,使空气阀的开度逐渐减小,直至落座关闭,此时处于真空阀、空气阀都关闭的状态(“双阀关闭”)。油压作用于活塞向上的压力与气室

38、A、B压力差产生的向下的压力相平衡。气室D、C压力差作用在膜片上的总推力与控制油压作用在活塞右端的总推力之和,与高压油液作用在活塞左端的总阻抗力相平衡。辅助缸活塞即保持平衡。作用力的大小取决于控制活塞下面的液压(主缸液压),即取决于踏板力和踏板行程。放松制动踏板时控制油压下降,控制阀活塞连同膜片座下移,使空气阀关闭,而真空阀开启,于是D、A两气室的空气经B、C两气室被吸出,从而A、B、C和D各气室又互相连通,都具有一定的真空度,以备下次制动之用。此时,所有运动部件都在各自回位弹簧的作用下复位。当真空增压器失效或真空管路无真空度(发动机熄火)时,推杆及活塞不会动作,辅助缸中的球阀将水远开启,保持

39、制动主缸和轮缸之间的油路畅通。此时,整个系统工作原理与人力液压制动系相同,但所需的踏板力要大得多。2、真空助力式液压制动传动装置真空助力式液压制动传动装置图为桑塔纳汽车真空助力式液压制动传动装置管路布置图,真空助力器装在主缸前,利用发动机进气管产生真空对驾驶员的踏板力增压。上图a为桑塔纳2000GSi轿车所用的真空助力器结构图,b、c为放大的控制阀。助力器右端通过螺栓与车身的前围板固定,并借调整叉口与制动踏板机构连接,左端与主缸连接。膜片3及控制阀将助力器分成前后两个腔室,前腔经真空单向阀32通向发动机进气管。控制阀体上通道A连通加力气室前腔和控制阀腔;通道B连通加力气室后腔和控制阀腔。带有密

40、封套的橡胶阀门8既与在阀体5上加工出来的阀座组成真空阀,又与铰连杆34的右端面组成大气阀。外界空气可经滤环滤清后通过大气阀、B通道进入助力器的后腔。未踩下制动踏板时(图936b),弹簧16将推杆15及铰连杆34推至右极限位置,橡胶阀门8在弹簧9的作用下紧贴铰连杆34的右端面,真空阀开启,大气阀关闭。助力器的前、后两腔经通道A、控制阀腔和通道B互相连通,并与大气隔绝。发动机运转后,真空单向阀被吸开,加力气室左、右两腔内都有一定的真空度。刚踩下制动踏板时,加力气室尚未起作用,阀体5固定不动,来自踏板机构的控制力可以推动推杆10和铰连杆34相对于阀体5左移,当与橡胶反作用盘14之间的间隙消除后,控制

41、力便经反作用盘、推杆15和18传给制动主缸。此时,主缸内的制动液以一定压力流入制动轮缸。与此同时,阀门8也在弹簧9作用下左移,直至与控制阀体5上的真空阀接触,使通道A和B隔断。然后,推杆10继续推动铰连杆34左移到其后端面离开阀门8一定距离。于是外界空气经过滤环,控制阀腔和通道B充入助力气室的后腔,使其中真空度降低,在加力气室前、后腔之间产生一个压力差,推动主缸活塞增加制动压力。在此过程中,膜片与阀座也不断左移,直到阀门重新与大气阀座接触而达到平衡状态为止。因此,在任何一个平衡状态下,加力气室后腔中的稳定真空度均与踏板行程成递增函数关系,从而体现控制阀的随动作用。加力气室两腔真空度差值造成的作

42、用力,除一部分用来平衡回位弹簧16的力以外,其余部分都作用在反作用盘上。因此制动主缸推杆所受的力为阀体5和铰连杆34二者所施作用力之和。另经反作用盘反馈过来的力,使得驾驶员有一定的踏板感。动力制动系动力制动系中,用以进行制动的能是由空气压缩机产生的气压能,或是由油泵产生的液压能,而空气压缩机或油泵则由汽车发动机驱动。所以,动力制动系是以汽车发动机为唯一的制动初始能源的。但就制动系范围而言,可认为制动能源是空气压缩机或油泵。在动力制动系中,驾驶员的肌体仅作为控制能源,而不是制动能源,其特点是制动操纵省力、制动强度大、踏板行程小;但需要消耗发动机的动力;制动粗暴而且结构比较复杂。因此,一般在中型以

43、上货车或客车上采用。动力制动系有气压制动系、气顶液制动系和全液压动力制动系三种。气压制动系是发展最早的一种动力制动系,其供能装置和传动装置全部是气压式的。其控制装置大多数是由制动踏板机构和制动控制阀等气压控制元件组成,也有的在踏板机构和制动控制阀之间还串联有液压式操纵传动装置。气顶液制动系的供能装置、控制装置与气压制动系的相同,但其传动装置则包括气压式和液压式两部分。全液压动力制动系中除制动踏板机构以外,其供能、控制和传动装置全是液压式。1)气压式制动系气压制动系动画气压制动回路。下图所示为解放CA1092型汽车双管路气压制动系统示意图。发动机驱动的活塞式空气压缩机将压缩空气经单向阀压人湿储气

44、筒;湿储气筒上装有安全阀和供其他系统使用的压缩空气放气阀,压缩空气在湿储气筒内冷却并进行油水分离,然后进入主储气筒的前、后腔。解放CA1092型汽车双管路气压制动系统示意图主储气筒的前腔与制动控制阀的上腔相连,以控制后轮制动;同时通过三通管与气压表及气压调节器相连;储气筒后腔与制动控制阀的下腔相连,以控制前轮制动,并通过三通管与气压表相连。气压表为双指针式,上指针指示储气筒前腔气压;下指针指示储气筒后腔气压。供气管路中常存有压缩空气,储气筒最高气压为0.8MPa。当驾驶员踩下制动踏板时,拉杆带动制动控制阀拉臂摆动,使制动控制阀工作。储气筒前腔的压缩空气经制动控制阀的上腔进入后轮制动气室,使后轮

45、制动;同时储气筒后腔的压缩空气通过制动控制阀下腔进入前制动气室,使前轮制动。当放松制动踏板时制动控制阀使各制动气室通大气以解除制动。如下图所示为东风EQ1090E型汽车双回路气压制动系示意图。其中备有两个主储气筒,单缸空气压缩机产生的压缩空气首先经过单向阀输人湿储气筒进行油水分离,之后分成两个回路:一个回路经过前制动主储气筒、并列双腔制动阀的后腔而通向前制动气室;另一回路是经过后制动主储气筒、双腔制动阀的前腔和快放阀而通向后制动气室。当其中一个回路发生故障失效时,另一回路仍能继续工作,以维持汽车具有一定的制动能力,从而提高了汽车的行驶安全性。装在制动阀至后制动气室之间的快放阀的作用是,当松开制

46、动踏板时,使后轮制动气室放气线路和时间缩短,保证后轮制动器迅速解除制动。前、后制动回路的储气筒上都装有低压报警器,当储气筒中的气压低于0.35MPa时,便接通装在驾驶室内转向柱支架内侧的蜂鸣器的电路,使之发出断续鸣叫声,以警告驾驶员,储气筒内气压过低。在不制动时,前制动主储气筒还通过挂车制动阀、挂车分离开关、连接头向挂车储气筒充气。制动时,双腔制动阀的前、后腔输出气压可能不一致,但都通入梭阀(也称双向阀),梭阀则只让压力较高一腔的压缩空气输人挂车制动阀,后者输出的气压又控制装在挂车上的继动阀,使挂车产生制动主要部件的结构及工作原理:(1)空气压缩机。空气压缩机一般固定在发动机缸体的一侧,多由发

47、动机通过皮带或齿轮来驱动、有的采用凸轮轴直接驱动。空气压缩机按缸数可分为单缸(用于东风EQ1090E型汽车)和双缸(用于解放CA1092型汽车)两种,其工作原理类似。东风EQ1090E型汽车采用的单缸风冷式空气压缩机。铸铁制成的缸体下端用螺栓紧固在曲轴箱上,缸体外表面铸有三道环形散热片,铝制气缸盖用螺栓紧固于气缸体上端面,其间装有密封缸垫。气缸盖内装有进气阀和排气阀,侧面进气口上装有空气滤清器。进气阀由导向座、弹簧、阀片、阀片座、密封圈等组成,经进气道与小空气滤清器相通。排气阀由导向座、弹簧、阀片、阀片座、密封圈、波形垫圈等组成,经排气管接头与储气筒相通。进气阀上方设有卸荷装置(卸荷室和卸荷阀

48、),卸荷阀壳体内镶嵌着套筒,其中有卸荷柱塞和弹簧。曲轴用两个球轴承支承在曲轴箱座孔内,前端伸出并固装有皮带轮。前轴颈和前轴承之间有油封,以防漏油。曲轴后端中心制成一圆孔,是空气压缩机润滑油的入口,在孔内装有弹簧及杯形油堵,油堵右端面有润滑油节流孔。弹簧又使油堵右端面压靠在后轴承盖中央的端面上,起端面油封作用,防止润滑油大量泄人曲轴箱影响发动机及空气压缩机的正常油压。曲轴箱底部有回油管接头使润滑油流回发动机油底壳。空气压缩机工作时,活塞下行,气缸内形成一定真空度,迫使进气阀克服弹簧的张力离开阀座,外界的空气即经空气滤清器、进气道、进气阀被吸人气缸,活塞下行至下止点附近时,随着活塞移动速度的降低。其真空度也逐渐减小,当减到不能克服弹簧的张力时,进气阀被弹簧压靠在阀座上,切断进气通路。活塞上行时,缸内空气即被压缩,压力升高,当压力升高到足以克服排气阀弹簧的张力与排气室内压缩空气

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 百科休闲 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服