1、1.小华的爸爸1分钟可以剪好5只自己的指甲。他在5分钟内可以剪好几只自己的指甲?2.小华带50元钱去商店买一个价值38元的小汽车,但售货员只找给他2元钱,这是为什么?3.小军说:“我昨天去钓鱼,钓了一条无尾鱼,两条无头的鱼,三条半截的鱼。你猜我一共钓了几条鱼?”同学们猜猜小军一共钓了几条鱼?4.6匹马拉着一架大车跑了6里,每匹马跑了多少里?6匹马一共跑了多少里?5.一只绑在树干上的小狗,贪吃地上的一根骨头,但绳子不够长,差了5厘米。你能教小狗用什么办法抓着骨头呢?6.王某从甲地去乙地,1分钟后,李某从乙地去甲地。当王某和李某在途中相遇时,哪一位离甲地较远一些?7.时钟刚敲了13下,你现在应该怎
2、么做?8.在广阔的草地上,有一头牛在吃草。这头牛一年才吃了草地上一半的草。问,它要把草地上的草全部吃光,需要几年?9.妈妈有7块糖,想平均分给三个孩子,但又不愿把余下的糖切开,妈妈怎么办好呢?10.公园的路旁有一排树,每棵树之间相隔3米,请问第一棵树和第六棵树之间相隔多少米?11.把8按下面方法分成两半,每半各是多少?算术法平均分是_,从中间横着分是_,从中间竖着分是_.12.一个房子4个角,一个角有一只猫,每只猫前面有3只猫,请问房里共有几只猫?13.一个房子4个角,一个角有一只猫,每只猫前面有4只猫,请问房里共有几只猫?14.小军、小红、小平3个人下棋,总共下了3盘。问他们各下了几盘棋?(
3、每盘棋是两个人下的)15.小明和小华每人有一包糖,但是不知道每包里有几块。只知道小明给了小华8块后,小华又给了小明14块,这时两人包里的糖的块数正好同样多。同学们,你说原来谁的糖多?多几块?答案:1.20只,包括手指甲和脚指甲2.因为他付给售货员40元,所以只找给他2元;3.0条,因为他钓的鱼是不存在的;4.6里,36里;5.只要教小狗转过身子用后脚抓骨头,就行了。6.他们相遇时,是在同一地方,所以两人离甲地同样远;7.应该修理时钟;8.它永远不会把草吃光,因为草会不断生长;9.妈妈先吃一块,再分给每个孩子两块;10.15米;11.4,0,3.12.4只;13.5只;14.2盘;15.原来小华
4、糖多;14-8=6块,因为多给了6块两人糖的块数正好同样多,所以原来小华比小明多12块。一架飞机从A城飞往B城,然后返回A城。在无风的情况下,它整个往返飞行的平均地速(相对于地面的速度)为每小时100英里。假设沿着从A城到B城的方向笔直地刮着一股持续的大风。如果在飞机往返飞行的整个过程中发动机的速度同往常完全一样,这股风将对飞机往返飞行的平均地速有何影响? 怀特先生论证道:“这股风根本不会影响平均地速。在飞机从A城飞往B城的过程中,大风将加快飞机的速度,但在返回的过程中大风将以相等的数量减缓飞机的速度。”“这似乎言之有理,”布朗先生表示赞同,“但是,假如风速是每小时l00英里。飞机将以每小时2
5、00英里的速度从A城飞往B城,但它返回时的速度将是零!飞机根本不能飞回来!”你能解释这似乎矛盾的现象吗? 答案 怀特先生说,这股风在一个方向上给飞机速度的增加量等于在另一个方向上给飞机速度的减少量。这是对的。但是,他说这股风对飞机整个往返飞行的平均地速不发生影响,这就错了。 怀特先生的失误在于:他没有考虑飞机分别在这两种速度下所用的时间。 逆风的回程飞行所用的时间,要比顺风的去程飞行所用的时间长得多。其结果是,地速被减缓了的飞行过程要花费更多的时间,因而往返飞行的平均地速要低于无风时的情况。 风越大,平均地速降低得越厉害。当风速等于或超过飞机的速度时,往返飞行的平均地速变为零,因为飞机不能往回
6、飞了。 4、 孙子算经是唐初作为“算学”教科书的著名的算经十书之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料。下卷收集了一些算术难题,“鸡兔同笼”问题是其中之一。原题如下: 令有雉(鸡)兔同笼,上有三十五头,下有九十四足。 问雄、兔各几何? 原书的解法是;设头数是a,足数是b。则b2a是兔数,a(b2a)是雉数。这个解法确实是奇妙的。原书在解这个问题时,很可能是采用了方程的方法。 设x为雉数,y为兔数,则有 xyb, 2x4ya 解之得 yb2a, xa(b2a) 根据这组公式很容易得出原题的答案:兔12只,雉22只。 5、我们
7、大家一起来试营一家有80间套房的旅馆,看看知识如何转化为财富。 经调查得知,若我们把每日租金定价为160元,则可客满;而租金每涨20元,就会失去3位客人。 每间住了人的客房每日所需服务、维修等项支出共计40元。 问题:我们该如何定价才能赚最多的钱? 答案:日租金360元。 虽然比客满价高出200元,因此失去30位客人,但余下的50位客人还是能给我们带来360*50=18000元的收入; 扣除50间房的支出40*50=2000元,每日净赚16000元。而客满时净利润只有160*80-40*80=9600元。 当然,所谓“经调查得知”的行情实乃本人杜撰,据此入市,风险自担。 6 数学家维纳的年龄,
8、全题如下: 我今年岁数的立方是个四位数,岁数的四次方是个六位数,这两个数,刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,维纳的年龄是多少? 解答:咋一看,这道题很难,其实不然。设维纳的年龄是x,首先岁数的立方是四位数,这确定了一个范围。10的立方是1000,20的立方是8000,21的立方是9261,是四位数;22的立方是10648;所以10=x=21 x四次方是个六位数,10的四次方是10000,离六位数差远啦,15的四次方是50625还不是六位数,17的四次方是83521也不是六位数。18的四次方是104976是六位数。20的四次方是160000;21的四次方是19448
9、1; 综合上述,得18=x=21,那只可能是18,19,20,21四个数中的一个数;因为这两个数刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,四位数和六位数正好用了十个数字,所以四位数和六位数中没有重复数字,现在来一一验证,20的立方是80000,有重复;21的四次方是194481,也有重复;19的四次方是130321;也有重复;18的立方是5832,18的四次方是104976,都没有重复。 所以,维纳的年龄应是18。有只猴子在树林采了100根香蕉堆成一堆,猴子家离香蕉堆50米,猴子打算把香蕉背会家, 每次最多能背50根,可是猴子嘴馋,每走一米要吃一根香蕉,问猴子最多能背回家
10、几根香 蕉? 25根。 先背50根到25米处,这时,吃了25根,还有25根,放下。回头再背剩下的50根,走到25米处时,又吃了25根,还有25根。再拿起地上的25根,一共50根,继续往家走,一共25米,要吃25根,还剩25根到家。 S先生、P先生、Q先生他们知道桌子的 抽屉里有16张扑克牌:红桃A、Q、4 黑桃J、8、4、2、7、3 草花K、Q、5、4、6 方块A、5。约翰教授从这16张牌中挑出一张牌来,并把这张牌的点数告诉 P先生,把这张牌的花色告诉Q先生。这时,约翰教授问P先生和Q 先生:你们能从已知的点数或花色中推知这张牌是什么牌吗? 于是,S先生听到如下的对话: P先生:我不知道这张牌
11、。 Q先生:我知道你不知道这张牌。 P先生:现在我知道这张牌了。 Q先生:我也知道了。 听罢以上的对话,S先生想了一想之后,就正确地推出这张牌是什么牌。 请问:这张牌是什么牌? 六年级趣味数学题 1、问5条直线最多将平面分为多少份? 2、太阳落下西山坡,鸭儿嘎嘎要进窝。四分之一岸前走,一半的一半随水波;身后还跟八只鸭,我家鸭子共几多? 3、 9棵树种10行,每行3棵,问怎样种? 4、数学谜语:(“”是分数线) 34的倒数 78 1100 12 34 1的任何次方 以上每条打一成语。 行吗?甲每小时行12千米,乙每小时行8千米.某日甲从东村到西村,乙同时从西村到东村,以知乙到东村时,甲已先到西村
12、5小时.求东西两村的距离甲乙的路程是一样的,时间甲少5小时,设甲用t小时可以得到1. 12t=8(t+5)t=10所以距离=120千米小明和小芳围绕着一个池塘跑步,两人从同一点出发,同向而行。小明:280米/分;小芳:220/分。8分后,小明追上小芳。这个池塘的一周有多少米?280*8-220*8=480这时候如果小明是第一次追上的话就是这样多这时候小明多跑一圈.1.用3.5.7.0组成一个两位数,( )乘( )的积最大.( )乘( )的积最小.2.有一些积木的块数比50多,比70少,每7个一堆,多了一块,每9个一堆,还是多1块,这些积木有多少块?3.6盆花要摆成4排,每排3盆,应该怎样摆?4
13、.4(1)班有4个人参加4X50米接力赛,问有多少种不同的安排方法?5.能否从右图中选出5个数,使它们的和为60?为什么? 15 25 3525 15 55 25 456.5饿连续偶数的和是240,这5个偶数分别是多少?7.某人从甲地到乙地,先骑12小时摩托车,再骑9小时自行车正好到达.返回时,先骑21小时自行车,再骑8小时摩托车也正好到达.从甲地到乙地如果全骑摩托车需要多少时间?1 70*53最大 30*75最小2 64块3 五角星形4 4*3*2*1=245不能,因为都是奇数,奇数个奇数相加不可能得偶数6.240/5=48,则其余偶数是:48-2=46,48-4=44,48+2=50,48
14、+4=527.摩托车的速度是xkm/h,自行车速是ykm/h 。21y+8x=12x+9y4x=12yx=3y所以摩托车共需12+9/3=15小时 问题1 如果一个四位数与一个三位数的和是1999,并且四位数和三位数是由7个不同的数字组成的。那么,这样的四位数最多能有多少个?这是北京市小学生第十五届迎春杯数学竞赛决赛试卷的第三大题的第4小题,也是选手们丢分最多的一道题。得到a1,be9,(e0),cf9,dg9。为了计算这样的四位数最多有多少个,由题设条件a,b,c,d,e,f,g互不相同,可知,数字b有7种选法(b1,8,9),c有6种选法(c1,8,b,e),d有4种选法(d1,8,b,e
15、,c,f)。于是,依乘法原理,这样的四位数最多能有(764=)168个。在解答完问题1以后,如果再进一步思考,不难使我们联想到下面一个问题。题2 有四张卡片,正反面各写有1个数字。第一张上写的是0和1,其他三张上分别写有2和3,4和5,7和8。现在任意取出其中的三张卡片,放成一排,那么一共可以组成多少个不同的三位数?此题为北京市小学生第十四届迎春杯数学竞赛初赛试题。其解为:后,十位数字b可取其他三张卡片的六种数字;最后个位数c可取剩余两张卡片的四种数字。综上所述,一共可以组成不同的三位数共(764)168个。如果从甲仓库搬67吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的2倍;如果从甲仓库搬1
16、7吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的5倍,原来两仓库各存货物多少吨?67(2+1)-17(5+1)=201-102=99(吨)99(5+1)-(2+1)=993=33(吨)答:原来的乙有33吨。(33+67)2+67=200+67=267(吨)答:原来的甲有267吨。分析:1、如果从甲仓库搬67吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的2倍;甲和乙总的数量没有变,总的数量包括2+1=3个现在的乙,现在的乙是原来的乙加上67得来。所以总的数量就包括3个原来的乙和3个6767(2+1)=201。2、如果从甲仓库搬17吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的5倍,理由同上,总的数量包括5+1=6个原来的乙和6个17(即17(5+1)=102)3、从1和2可看出,原来3个乙和原来6个乙只相差3个乙,而这三个乙正好相差201-102=99吨。可求出原来的乙是多少,993=33吨。4、再求原来的甲即可。