资源描述
2012年普通高等学校招生全国统一考试(广东卷)B
数学(文科)
本试卷共4页,21题,满分150分。考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔盒涂改液。不按以上要求作答的答案无效。
4.作答选做题时,请先用2B铅笔填涂选做题的题号对应的信息点,再作答。漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。考试结束后,将试卷和答题卡一并交回。
参考公式:球的体积,其中R为球的半径。
锥体的体积公式为,其中S为锥体的底面积,h为锥体的高。
一组数据x1,x2,…,xn的标准差,其中表示这组数据的平均数。
一 、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的
1 设i为虚数单位,则复数=
A -4-3i B -4+3i C 4+3i D 4-3i
2 设集合U={1,2,3,4,5,6}, M={1,3,5} 则CuM=
A {2,4,6} B {1,3,5} C {1,2,4} D .U
3 若向量=(1,2),=(3,4),则=
A (4,6) B (-4,-6) C (-2,-2) D (2,2)
4 下列函数为偶函数的是
A y=sinx B y= C y= D y=ln
5.已知变量x,y满足约束条件 x +y≤1,则z =x +2y的最小值为
x–y≤1
x +1≥0
A.3 B.1 C.-5 D.-6
6.在△ABC中,若∠A=60°,∠B=45°,BC=,则AC=
A. B. C. D.
7.某几何体的三视图如图1所示,它的体积为
A.72π B.48π C.30π D.24π
8.在平面直角坐标系xOy中,直线3x+4y-5=0与圆x²+y²=4相交于A、B两点,则弦AB的长等于
A. B. C. D.1
9.执行如图2所示的程序框图,若输入n的值为6,则输出s的值为
A.105 B.16 C.15 D.1
10.对任意两个非零的平面向量α和β,定义。若两个非零的平面向量a,b满足a与b的夹角,且a·b和b·a都在集合中,则
A. B. C.1 D.
二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分。
(一)必做题(11~13题)
11.函数的定义域为__________。
12.若等比数列{an}满足a2a4=,则
13.由正整数组成的一组数据x1,x2,x3,x4,其平均数和中位数都是2,且标准差等于1,则这组数据为__________。(从小到大排列)
(二)选做题(14-15题,考生只能从中选做一题)
14,(坐标系与参数方程选做题)在平面直角坐标系xOy中,曲线C1和C2的参数方程分别为和,则曲线C1与C2的交点坐标为_______。
15.(几何证明选讲选做题)如图3所示,直线PB与圆O想切于点B,D是弦AC上的点,∠PBA=∠DBA,若AD=m,AC=n,则AB=_________。
三、解答题:本大题共6小题,满分80分。解答须写出文字说明、证明过程和演算步骤。
16.(本小题满分12分)
已知函数,x∈R,且。
(1)求A的值;
(2)设,,,求cos(α+β)的值。
(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数。
17(本小题满分13分)
某校100名学生期中考试语文成绩的频率分布直方图如图4所示,其中成绩分组区间是:[50,60][60,70][70,80][80,90][90,100]。
(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;
18.(本小题满分13分)
如图5所示,在四棱锥P-ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中点,F是DC上的点且DF=AB,PH为△PAD边上的高。
(1) 证明:PH⊥平面ABCD;
(2) 若PH=1,AD=,FC=1,求三棱锥E-BCF的体积;
(3) 证明:EF⊥平面PAB。
19. (本小题满分14分)
设数列{an}的前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn-n2,n∈N﹡。
(1) 求a1的值;
(2) 求数列{an}的通项公式。
20.(本小题满分14分)
在平面直角坐标系xoy中,已知椭圆C1:的左焦点为F1(-1,0),且点P(0,1)在C1上。
(1) 求椭圆C1的方程;
(2) 设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l的方程。
21.(本小题满分14分)
设0<a<1,集合
(1)求集合D(用区间表示)
(2)求函数在D内的极值点。
展开阅读全文