资源描述
全等三角形知识点总结及复习
全等三角形知识点总结及复习
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(全等三角形知识点总结及复习)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以下为全等三角形知识点总结及复习的全部内容。
12
全等三角形知识点总结及复习
一、知识网络
二、基础知识梳理
(一)、基本概念
1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;
即能够完全重合的两个图形叫全等形。同样我们把能够完全重合的两个三角形叫做全等三角形。
全等三角形定义 :能够完全重合的两个三角形称为全等三角形。(注:全等三角形是相似三角形中的特殊情况)
当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
由此,可以得出:全等三角形的对应边相等,对应角相等。
(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;
(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;
(3)有公共边的,公共边一定是对应边;
(4)有公共角的,角一定是对应角;
(5)有对顶角的,对顶角一定是对应角;
2、全等三角形的性质
(1)全等三角形对应边相等;(2)全等三角形对应角相等;
3、全等三角形的判定方法
(1)三边对应相等的两个三角形全等。
(2)两角和它们的夹边对应相等的两个三角形全等。
(3)两角和其中一角的对边对应相等的两个三角形全等。
(4)两边和它们的夹角对应相等的两个三角形全等。
(5)斜边和一条直角边对应相等的两个直角三角形全等。
4、角平分线的性质及判定
性质:角平分线上的点到这个角的两边的距离相等
判定:到一个角的两边距离相等的点在这个角平分线上
(二)灵活运用定理
1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性.
2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。
3、要善于灵活选择适当的方法判定两个三角形全等。
(1)已知条件中有两角对应相等,可找:
①夹边相等(ASA)②任一组等角的对边相等(AAS)
(2)已知条件中有两边对应相等,可找
①夹角相等(SAS)②第三组边也相等(SSS)
(3)已知条件中有一边一角对应相等,可找
①任一组角相等(AAS 或 ASA)②夹等角的另一组边相等(SAS)
(三)经典例题
例1. 已知:如图所示,AB=AC,,求证:。
例2。 如图所示,已知:AF=AE,AC=AD,CF与DE交于点B.求证:。
例3 。如图所示,AC=BD,AB=DC,求证:.
例4. 如图所示,,垂足分别为D、E,BE与CD相交于点O,且
求证:BD=CE。
例5:已知:如图,在四边形ABCD中,AC平分∠BAD、CE⊥AB于E,且∠B+∠D=180°.
求证:AE=AD+BE
分析:从上面例题,可以看出,有时为了证明某两条线段和等于另一条线段,可以考虑“截长补短”的添加辅助线,本题是否仍可考虑这样“截长补短”的方法呢?由于AC是角平分线,所以在AE上截AF=AD,连结FC,可证出DADC≌DAFC,问题就可以得到解决.
证明(一):
在AE上截取AF=AD,连结FC。
在DAFC和DADC中
∴DAFC≌DADC(边角边)
∴∠AFC=∠D(全等三角形对应角相等)
∵∠B+∠D=180°(已知)
∴∠B=∠EFC(等角的补角相等)
在DCEB和DCEF中
∴DCEB≌DCEF (角角边)
∴BE=EF
∵AE=AF+EF
∴AE=AD+BE(等量代换)
证明(二):
在线段EA上截EF=BE,连结FC(如右图)。 小结:在几何证明过程中,如果现成的三角形不可以证明,则需要我们选出所需要的三角形,这就需要我们恰到好处的添加辅助线。
(四) 全等三角形复习练习题
一、选择题
1.如图,给出下列四组条件:
①;②;
③;④.
其中,能使的条件共有( )A.1组 B.2组 C.3组 D.4组
2.如图,分别为的,边的中点,将此三角形沿折叠,使点落在边上的点处.若,则等于( )
3.如图(四),点是上任意一点,,还应补充一个条件,才能推出.从下列条件中补充一个条件,不一定能推出的是( )
A. B. C. D.
A. B. C . D.
1题图 2题图
4.如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是( )
(A)∠B=∠E,BC=EF(B)BC=EF,AC=DF (C)∠A=∠D,∠B=∠E(D)∠A=∠D,BC=EF
5.如图,△ABC中,∠C = 90°,AC = BC,AD是∠BAC的平分线,DE⊥AB于E,
若AC = 10cm,则△DBE的周长等于( )
A.10cm B.8cm C.6cm D.9cm
6. 如图所示,表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A.1处 B.2处 C.3处 D.4处
4题图 5题图
7.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配一块完全一样的玻璃,那
么最省事的方法是( )A.带①去 B.带②去 C.带③去 D.带①②③去
8.如图,在中, ,是的垂直平分线,交于点,交
于点.已知,则的度数为( )
A. B. C. D.
9.如图,,=30°,则的度数为( )
A.20° B.30° C.35° D.40°
10.如图,AC=AD,BC=BD,则有( )
A.AB垂直平分CD B.CD垂直平分AB
1题图C.AB与CD互相垂直平分 D.CD平分∠ACB
8题图 10题图
11.尺规作图作的平分线方法如下:以为圆心,任意长为半径画弧交、于、,再分别以点、为圆心,以大于长为半径画弧,两弧交于点,作射线由作法得的根据是( )A.SAS B.ASA C.AAS D.SSS
12.如图, ∠C=90°,AD平分∠BAC交BC于D,若BC=5cm,BD=3cm,则点D到AB的距离为( )A. 5cm B. 3cm C. 2cm D. 不能确定
13.如图,OP平分,,,垂足分别为A,B.下列结论中不一定成立的是( )A. B.平分 C. D.垂直平分
14.如图,已知那么添加下列一个条件后,仍无法判定的是( )
A. B. C. D.
11题图 12题图
二、填空题
1。如图,已知,,要使 ≌,可补充的条件是 (写出一个即可)_______________.
2。如图,在△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于D,DE⊥AB于E,且AB=5cm,则△DEB的周长为 ________
3。如图,,请你添加一个条件: ,使(只添一个即可).
4。如图,在ΔABC中,∠C=90°∠ABC的平分线BD交AC于点D,若BD=10厘米,BC=8厘米,DC=6厘米,则点D到直线AB的距离是__________厘米。
1题图 2题图 3题图 4题图
5。观察图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三角形
有 个 .
6。已知:如图,△OAD≌△OBC,且∠O=70°,∠C=25°,则∠AEB=________度。
7如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE、AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ。以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°。
恒成立的结论有_______________________(把你认为正确的序号都填上).
8。如图所示,AB = AD,∠1 = ∠2,添加一个适当的条件,使△ABC ≌ △ADE,则需要添加的条件是________.
6题图 7 题图 8 题图
三、解答题
1.如图,已知AB=AC,AD=AE,求证:BD=CE.
2.如图,在中,,分别以为边作两个等腰直角三角形和,使.
(1)求的度数;(2)求证:.
3.如图,在△ABE中,AB=AE,AD=AC,∠BAD=∠EAC, BC、DE交于点O。求证:(1) △ABC≌△AED; (2) OB=OE .
4.如图,D是等边△ABC的边AB上的一动点,以CD为一边向上作等边△EDC,连接AE,找出图中的一组全等三角形,并说明理由.
5.如图,在△ABC和△DCB中,AB = DC,AC = DB,AC与DB交于点M.
(1)求证:△ABC≌△DCB ;(2)过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N,试判断线段BN与CN的数量关系,并证明你的结论.
6。如图,四边形的对角线与相交于点,,.
求证:(1);(2).
7.如图,在和中,现给出如下三个论断:①;②;
③.请选择其中两个论断为条件,另一个论断为结论,构造一个命题.
(1)写出所有的真命题(写成“”形式,用序号表示):
.
(2)请选择一个真命题加以证明.
你选择的真命题是:.
证明:
8。已知:如图,B、E、F、C四点在同一条直线上,AB=DC,BE=CF,∠B=∠C.求证:OA=OD.
9.如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.
求证:BD=2CE.
10.如图,,请你写出图中三对全等三角形,并选取其中一对加以证明.
11.已知:如图,DC∥AB,且DC=AE,E为AB的中点,
(1)求证:△AED≌△EBC.
(2)观看图前,在不添辅助线的情况下,除△EBC外,请再写出两个与△AED的面积相等的三角
形.(直接写出结果,不要求证明):
12.如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.
(1)求证:MB=MD,ME=MF
(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.
13已知:如图A、D、C、B在同一直线上,AC=BD,AE=BF,CE=DF
求证:(1)DF∥CE (2)DE=CF A
D F
E
C
E
B
14。如图,已知在△ABC中,BE、CF分别是AC、AB两条边上的高,在BE上截取BD = AC,在CF的延长线上截取CG = AB,连结AD、AG,则AG与AD有何关系?试证明你的结论
15。如图,已知BE⊥AC于E,CF⊥AB于F,BE、CF相交于点D,若AB=AC.求证:AD平分∠BAC.
16。如图,∠B=∠C=90°,M是BC中点,DM平分∠ADC,求证:AM平分∠DAB.
17.如图,在△ABC和△DBC中,∠ACB =∠DBC = 90º,E是BC的中点,EF⊥AB,垂足为F,且AB = DE.
18。如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别为E、F,连接EF,EF与AD交于G,AD与EG垂直吗?证明你的结论。
19.如图,在△ABC中,∠B=60°,△ABC的角平分线AD,CE相交于点O.试说明AE+CD=AC..如图,在△ABC中,∠B=60°,△ABC的角平分线AD,CE相交于点O.试说明AE+CD=AC.
20.如图,已知E是正方形ABCD的边CD 的中点,点F在BC上,且∠DAE=∠FAE。
求证:AF=AD+CF。
14.已知:在△ABC中,∠BAC=90°,AB=AC,AE是过点A的一条直线,且BD⊥AE于D,CE⊥AE于E,(1)当直线AE处于如图①的位置时,有BD=DE+CE,请说明理由;(2)当直线AE处于如图②的位置时,则BD,DE,CE的关系如何?请说明理由;(3)归纳(1)(2),请用简洁的语言表达BD,DE,CE之间的关系。
展开阅读全文