1、21圆周角定理课后练习一、选择题1.如图,CD是O的直径,弦ABCD于E,BCD25,则下列结论错误的是()AAEBE BOEDECAOD50DD是的中点解析:选B因为CD是O的直径,弦ABCD,所以,AEBE,因为BCD25,所以AOD2BCD50,故A,C,D正确,B不能得证2如图所示,AB是O的直径,C是上的一点,且AC8,BC6,则O的半径r等于()AB5C10 D不确定解析:选B由已知得ACB90,AB10,即2r10,r5.3.如图,直径为10的C经过点A(0,5)和点O(0,0),B是y轴右侧C弧上一点,则cosABO的值为()ABCD解析:选B法一:设C与x轴另一个交点为D,连
2、接AD,如图所示:因为AOD90,所以AD为C的直径,又因为ABO与ADO为圆弧AO所对的圆周角,所以ABOADO,又因为A(0,5),所以OA5,在RtADO中,AD10,AO5,根据勾股定理得:OD5.所以cosABOcosADO,故选B.法二:连接CO,因为OA5,ACCO5,所以ACO为等边三角形,ACO60,ABOACO30,所以cosABOcos 30.4已知P,Q,R都在弦AB的同侧,且点P在上,点Q在所在的圆内,点R在所在的圆外(如图),则()AAQBAPBARBBAQBARBAPBCAPBAQBARBDARBAPBACB,ADBARB.因为ACBAPBADB,所以AQBAPB
3、ARB.二、填空题5.如图,点A,B,C在O上,AOC60,则ABC的度数是 解析:因为AOC60,所以弧ABC的度数为60,AC对的优弧的度数为36060300,所以ABC150.答案:1506.如图,在ABC中,AB为O的直径,B60,BOD100,则C的度数为 解析:因为BOD100,所以ABOD50.因为B60,所以C180AB70.答案:707.如图,ABC为O的内接三角形,AB为O的直径,点D在O上,ADC68,则BAC .解析:因为AB是圆O的直径,所以弧ACB的度数为180,它所对的圆周角为90,所以BAC90ABC90ADC906822.答案:228.如图,在半径为2 cm的
4、O内有长为2 cm的弦AB,则此弦所对的圆心角AOB为 解析:作OCAB于C,则BC,在RtBOC中,OC1(cm),sinB,B30,BOC60,AOB120.答案:120三、解答题9.如图,在O中,弦AB16,点C在O上,且sin C.求O的半径长解:作直径AD,连接BD,则ABD90,DC.因为sin C,所以sin D.在RtABD中,sin D,又因为AB16,所以AD1620,所以OAAD10,即O的半径长为10.10如图,已知在O中,直径AB为10 cm,弦AC为6 cm,ACB的平分线交O于D,求BC,AD和BD的长解:因为AB为直径,所以ACBADB90.在RtABC中,BC8(cm)因为CD平分ACB,所以,所以ADB为等腰三角形所以ADBDAB105(cm)11.如图,AB是O的直径,弦CDAB于点N,点M在O上,1C.(1)求证:CBMD.(2)若BC4,sin M,求O的直径解:(1)证明:因为C与M是同一弧所对的圆周角,所以CM.又1C,所以1M,所以CBMD(内错角相等,两直线平行)(2)由sin M知,sin C,所以,BN4.由射影定理得:BC2BNAB,则AB6.所以O的直径为6.