资源描述
______________________________________________________________________________________________________________
高考椭圆几种题型
― 引言
在高考之中占有比较重要的地位,并且占的分数也多。分析历年的高考试题,在选择题,填空题,大题都有椭圆的题。所以我们对知识必须系统的掌握。对各种题型,基本的解题方法也要有一定的了解。
二 椭圆的知识
(一)、定义
1 平面内与与定点F1、F2的距离之和等于定长2a(2a>|F1F2|)的点的轨迹叫做椭圆,其中F1、F2称为椭圆的焦点,|F1F2|称为焦距。其复数形式的方程为|Z-Z1|+| Z-Z2|=2a(2a>|Z1-Z2|)
2一动点到一个定点F的距离和它到一条直线的距离之比是一个大于0小于1的常数,则这个动点的轨迹叫椭圆,其中F称为椭圆的焦点,l称为椭圆的准线。
(二)、方程
1中心在原点,焦点在x轴上:
2中心在原点,焦点在y轴上:
3 参数方程:
4 一般方程:
(三)、性质
1 顶点:或
2 对称性:关于,轴均对称,关于原点中心对称。
3 离心率:
4 准线
5 焦半径:设为上一点,F1、F2为左、右焦点,则,;设为上一点,F1、F2为下、上焦点,则,。
三 椭圆题型
(一)椭圆定义
1.椭圆定义的应用
例1 椭圆的一个顶点为,其长轴长是短轴长的2倍,求椭圆的标准方程.
分析:题目没有指出焦点的位置,要考虑两种位置.
解:(1)当为长轴端点时,,,
椭圆的标准方程为:;
(2)当为短轴端点时,,,
椭圆的标准方程为:;
说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.
例2 已知椭圆的离心率,求的值.
分析:分两种情况进行讨论.
解:当椭圆的焦点在轴上时,,,得.由,得.
当椭圆的焦点在轴上时,,,得.
由,得,即.
∴满足条件的或.
说明:本题易出现漏解.排除错误的办法是:因为与9的大小关系不定,所以椭圆的焦点可能在轴上,也可能在轴上.故必须进行讨论.
例3 已知方程表示椭圆,求的取值范围.
解:由得,且.
∴满足条件的的取值范围是,且.
说明:本题易出现如下错解:由得,故的取值范围是.
出错的原因是没有注意椭圆的标准方程中这个条件,当时,并不表示椭圆.
例4 已知表示焦点在轴上的椭圆,求的取值范围.
分析:依据已知条件确定的三角函数的大小关系.再根据三角函数的单调性,求出的取值范围.
解:方程可化为.因为焦点在轴上,所以.
因此且从而.
说明:(1)由椭圆的标准方程知,,这是容易忽视的地方.
(2)由焦点在轴上,知,. (3)求的取值范围时,应注意题目中的条件
例5 已知动圆过定点,且在定圆的内部与其相内切,求动圆圆心的轨迹方程.
分析:关键是根据题意,列出点P满足的关系式.
解:如图所示,设动圆和定圆内切于点.动点到两定点,
即定点和定圆圆心距离之和恰好等于定圆半径,
即.∴点的轨迹是以,为两焦点,
半长轴为4,半短轴长为的椭圆的方程:.
说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准方程,求轨迹的方程.这是求轨迹方程的一种重要思想方法.
2.关于线段长最值的问题一般两个方法:一种是借助图形,由几何图形中量的关系求最值,二是建立函数关系求最值,或用均值不等式来求最值。
例(1):点P为为椭圆上一点,F1、F2是椭圆的两个焦点,试求:取得最值时的点坐标。
解:(1)设,则。由椭圆第二定义知:。
∴。当时, 取最大值,此时点P(0,±b);当时,取最小值b2,此时点P(±a,0)。
(二).焦半径及焦三角的应用
例1 已知椭圆方程,长轴端点为,,焦点为,,是椭圆上一点,,.求:的面积(用、、表示).
分析:求面积要结合余弦定理及定义求角的两邻边,从而利用求面积.
解:如图,设,由椭圆的对称性,不妨设,由椭圆的对称性,不妨设在第一象限.由余弦定理知: ·.①
由椭圆定义知: ②,则得 .
故 .
例2. 已知椭圆内有一点,、分别是椭圆的左、右焦点,点是椭圆上一点. 求的最大值、最小值及对应的点坐标;
分析:本题考查椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法.二是数形结合,即几何方法.本题若按先建立目标函数,再求最值,则不易解决;若抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解.
解:
如上图,,,,设是椭圆上任一点,由,,∴,等号仅当时成立,此时、、共线.
由,∴,等号仅当时成立,此时、、共线.
建立、的直线方程,解方程组得两交点
、.
综上所述,点与重合时,取最小值,点与重合时,取最大值.
(三)、直线与椭圆相交问题
(1) 常用分析一元二次议程解的情况,仅有△还不够,且用数形结合的思想。
(2) 弦的中点,弦长等,利用根与系数的关系式,但△>0这一制约条件不同意。
例1. 已知直线过椭圆的一个焦点,斜率为2,与椭圆相交于M、N两点,求弦的长。
解:由得。
方法一:由弦长公式
方法二:
例2 已知长轴为12,短轴长为6,焦点在轴上的椭圆,过它对的左焦点作倾斜解为的直线交椭圆于,两点,求弦的长.
分析:可以利用弦长公式求得,
也可以利用椭圆定义及余弦定理,还可以利用焦点半径来求.
解:(法1)利用直线与椭圆相交的弦长公式求解.
.因为,,所以.因为焦点在轴上,
所以椭圆方程为,左焦点,从而直线方程为.
由直线方程与椭圆方程联立得:.设,为方程两根,所以,,, 从而.
(法2)利用椭圆的定义及余弦定理求解.
由题意可知椭圆方程为,设,,则,.
在中,,即;
所以.同理在中,用余弦定理得,所以.
(法3)利用焦半径求解.
先根据直线与椭圆联立的方程求出方程的两根,,它们分别是,的横坐标.
再根据焦半径,,从而求出
(四)、“点差法”解题。“设而不求”的思想。
当涉及至平行法的中点轨迹,过定点弦的中点轨迹,过定点且被定点平分的弦所在直线方程,用“点差法”来求解。
步骤:1.设A(x1,y1) B(x2,y2)分别代入椭圆方程;
2.设为AB的中点。两式相减,
3.得出
注:一般的,对椭圆上弦及中点,,有
说明:
(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹.
(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率.
(3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.
例1 已知椭圆,(1)求过点且被平分的弦所在直线的方程;
(2)求斜率为2的平行弦的中点轨迹方程;
(3)过引椭圆的割线,求截得的弦的中点的轨迹方程;
(4)椭圆上有两点、,为原点,且有直线、斜率满足,
求线段中点的轨迹方程.
分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的方法.
解:设弦两端点分别为,,线段的中点,则
①-②得.
由题意知,则上式两端同除以,有,
将③④代入得.⑤
(1)将,代入⑤,得,故所求直线方程为: . ⑥
将⑥代入椭圆方程得,符合题意,为所求.
(2)将代入⑤得所求轨迹方程为: .(椭圆内部分)
(3)将代入⑤得所求轨迹方程为: .(椭圆内部分)
(4)由①+②得 : , ⑦, 将③④平方并整理得
, ⑧, , ⑨
将⑧⑨代入⑦得: , ⑩
再将代入⑩式得: , 即 .
此即为所求轨迹方程.当然,此题除了设弦端坐标的方法,还可用其它方法解决.
例2 已知中心在原点,焦点在轴上的椭圆与直线交于、两点,为中点,的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.
解:由题意,设椭圆方程为,
由,得,
∴,,
,∴,
∴为所求.
例5 分析:已知是直线被椭圆所截得的线段的中点,求直线的方程.
本题考查直线与椭圆的位置关系问题.通常将直线方程与椭圆方程联立消去(或),得到关于(或)的一元二次方程,再由根与系数的关系,直接求出,(或,)的值代入计算即得.
并不需要求出直线与椭圆的交点坐标,这种“设而不求”的方法,在解析几何中是经常采用的.
解:方法一:设所求直线方程为.代入椭圆方程,整理得
①
设直线与椭圆的交点为,,则、是①的两根,∴
∵为中点,∴,.∴所求直线方程为.
方法二:设直线与椭圆交点,.∵为中点,∴,.
又∵,在椭圆上,∴,两式相减得,
即.∴.∴直线方程为.
方法三:设所求直线与椭圆的一个交点为,另一个交点.
∵、在椭圆上,∴ ①。 ②
从而,在方程①-②的图形上,而过、的直线只有一条,∴直线方程为.
(五)、轨迹问题
这一问题难,但是解决法非常多,有如下几种。
1.直接法:根据条件,建立坐标系,设动点(x,y),直接列出动点所应满足的方程。
2.代入法:一个是动点Q(x0,y0)在已知曲线F(x,y)=0,上运动,而动点P(x,y)与Q点满足某种关系,要求P点的轨迹。其关键是列出P、Q两点的关系式
3.定义法:通过对轨迹点的分析,发现与某个圆锥曲线的定义相符,则通过这个定义求出方程。
4.参数法:在x,y间的方程F(x,y)=0难以直接求得时,往往用(t为参数)来反映x,y之间的关系。
常用的参数有斜率k与角等。
例:的一边的的顶点是B(0,6)和C(0,-6),另两边斜率的乘积是,求顶点A的轨迹方程:
解:设,由题设得。化简得
Welcome To
Download !!!
欢迎您的下载,资料仅供参考!
精品资料
展开阅读全文