收藏 分销(赏)

高考理科数学全国卷解析几何大题近四年全解析版.doc

上传人:胜**** 文档编号:669250 上传时间:2024-01-29 格式:DOC 页数:15 大小:1.11MB
下载 相关 举报
高考理科数学全国卷解析几何大题近四年全解析版.doc_第1页
第1页 / 共15页
高考理科数学全国卷解析几何大题近四年全解析版.doc_第2页
第2页 / 共15页
点击查看更多>>
资源描述
高考理科数学全国1卷 (2019一卷理)已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P. (1)若|AF|+|BF|=4,求l的方程; (2)若,求|AB|. 解:设直线. (1)由题设得,故,由题设可得. 由,可得,则. 从而,得. 所以的方程为. (2)由可得. 由,可得. 所以.从而,故. 代入的方程得. 故. (2018一卷理)设椭圆的右焦点为,过的直线与交于两点,点的坐标为. (1)当与轴垂直时,求直线的方程; (2)设为坐标原点,证明:. 解:(1)由已知得,l的方程为x=1. 由已知可得,点A的坐标为或. 所以AM的方程为或. (2)当l与x轴重合时,. 当l与x轴垂直时,OM为AB的垂直平分线,所以. 当l与x轴不重合也不垂直时,设l的方程为,, 则,直线MA,MB的斜率之和为. 由得 . 将代入得 . 所以,. 则. 从而,故MA,MB的倾斜角互补,所以. 综上,. (2017一卷理)已知椭圆C:(a>b>0),四点P1(1,1),P2(0,1),P3(–1,),P4(1,)中恰有三点在椭圆C上. (1)求C的方程; (2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点. 解: (1)由于,两点关于y轴对称,故由题设知C经过,两点. 又由知,C不经过点P1,所以点P2在C上. 因此,解得. 故C的方程为. (2)设直线P2A与直线P2B的斜率分别为k1,k2, 如果l与x轴垂直,设l:x=t,由题设知,且,可得A,B的坐标分别为(t,),(t,). 则,得,不符合题设. 从而可设l:().将代入得 由题设可知. 设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=. 而 . 由题设,故. 即. 解得. 当且仅当时,,欲使l:,即, 所以l过定点(2,) (2016一卷理)设圆的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E. (I)证明为定值,并写出点E的轨迹方程; (II)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围. 【答案】(I)();(II) 【解析】 试题分析:(I)利用椭圆定义求方程;(II)把面积表示为关于斜率k的函数,再求最值。 试题解析:(I)因为,,故, 所以,故. 又圆的标准方程为,从而,所以. 由题设得,,,由椭圆定义可得点的轨迹方程为: (). (II)当与轴不垂直时,设的方程为,,. 由得. 则,. 所以. 过点且与垂直的直线:,到的距离为,所以 .故四边形的面积 . 可得当与轴不垂直时,四边形面积的取值范围为. 当与轴垂直时,其方程为,,,四边形的面积为12. 综上,四边形面积的取值范围为. 高考理科数学全国二卷 (2019二卷理)已知点A(−2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为−.记M的轨迹为曲线C. (1)求C的方程,并说明C是什么曲线; (2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连结QE并延长交C于点G. (i)证明:是直角三角形; (ii)求面积的最大值. 解:(1)由题设得,化简得,所以C为中心在坐标原点,焦点在x轴上的椭圆,不含左右顶点. (2)(i)设直线PQ的斜率为k,则其方程为. 由得. 记,则. 于是直线的斜率为,方程为. 由得 .① 设,则和是方程①的解,故,由此得. 从而直线的斜率为. 所以,即是直角三角形. (ii)由(i)得,,所以△PQG的面积. 设t=k+,则由k>0得t≥2,当且仅当k=1时取等号. 因为在[2,+∞)单调递减,所以当t=2,即k=1时,S取得最大值,最大值为. 因此,△PQG面积的最大值为. (2018二卷理)设抛物线的焦点为,过且斜率为的直线与交于,两点,. (1)求的方程; (2)求过点,且与的准线相切的圆的方程. 解:(1)由题意得,l的方程为. 设, 由得. ,故. 所以. 由题设知,解得(舍去),. 因此l的方程为. (2)由(1)得AB的中点坐标为,所以AB的垂直平分线方程为,即. 设所求圆的圆心坐标为,则 解得或 因此所求圆的方程为或. (2017二卷理)设O为坐标原点,动点M在椭圆C:上,过M做x轴的垂线,垂足为N,点P满足. (1) 求点P的轨迹方程; (2) 设点Q在直线x=-3上,且.证明:过点P且垂直于OQ的直线l过C的左焦点F. 解: (1)设P(x,y),M(x0,y0),设N(x0,0), 由得 因为M(x0,y0)在C上,所以 因此点P的轨迹方程为 (2)由题意知F(-1,0).设Q(-3,t),P(m,n),则 , 由得,又由(1)知,故 3+3m-tn=0 所以,即又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F. (2016二卷理)已知椭圆E:的焦点在轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA. (I)当t=4,时,求△AMN的面积; (II)当时,求k的取值范围. 解析:(I)设,则由题意知,当时,的方程为,. 由已知及椭圆的对称性知,直线的倾斜角为.因此直线的方程为. 将代入得.解得或,所以. 因此的面积. (II)由题意,,. 将直线的方程代入得. 由得,故. 由题设,直线的方程为,故同理可得, 由得,即. 当时上式不成立, 因此.等价于, 即.由此得,或,解得. 因此的取值范围是. 高考数学理科全国三卷 (2019三卷理)21.已知曲线,为直线上的动点.过作的两条切线,切点分别是,, (1)证明:直线过定点; (2)若以为圆心的圆与直线相切,且切点为线段的中点,求四边形的面积. 答案: 见解析; 解答: (1)当点在时,设过的直线方程为,与曲线联立化简得 ,由于直线与曲线相切,则有,解得, 并求得坐标分别为,所以直线的方程为; 当点横坐标不为时,设直线的方程为(),由已知可得直线 不过坐标原点即,联立直线方程与曲线的方程可得,, 消并化简得,∵有两个交点∴, 设,,根据韦达定理有, ,, 由已知可得曲线为抛物线等价于函数的图像, 则有,则抛物线在上的切线方程为①, 同理,抛物线在上的切线方程为②, 联立①,②并消去可得, 由已知可得两条切线的交点在直线上,则有 , 化简得,,∵,∴, 即,即为,解得,经检验满足条件, 所以直线的方程为过定点, 综上所述,直线过定点得证. (2)由(1)得直线的方程为, 当时,即直线方程为,此时点的坐标为, 以为圆心的圆与直线相切于恰为中点, 此时; 当时,直线方程与曲线方程联立化简得, ,,, 则中点坐标为, 由已知可得,即, 解得,, 由对称性不妨取,则直线方程为, 求得的坐标为,, 到直线距离,到直线距离, 则, 综上所述,四边形的面积为或. (2018三卷理)已知斜率为的直线与椭圆交于,两点,线段的中点为. (1)证明:; (2)设为的右焦点,为上一点,且.证明:,,成等差数列,并求该数列的公差. 解:(1)设,则. 两式相减,并由得 . 由题设知,于是 .① 由题设得,故. (2)由题意得,设,则 . 由(1)及题设得. 又点P在C上,所以,从而,. 于是 . 同理. 所以. 故,即成等差数列. 设该数列的公差为d,则 .② 将代入①得. 所以l的方程为,代入C的方程,并整理得. 故,代入②解得. 所以该数列的公差为或. (2017三卷理)已知抛物线C:y2=2x,过点(2,0)的直线l交C与A,B两点,圆M是以线段AB为直径的圆. (1)证明:坐标原点O在圆M上; (2)设圆M过点P(4,-2),求直线l与圆M的方程. 解: (1)设 由可得 又=4 因此OA的斜率与OB的斜率之积为 所以OA⊥OB 故坐标原点O在圆M上. (2)由(1)可得 故圆心M的坐标为,圆M的半径 由于圆M过点P(4,-2),因此,故 即 由(1)可得, 所以,解得. 当m=1时,直线l的方程为x-y-2=0,圆心M的坐标为(3,1),圆M的半径为,圆M的方程为 当时,直线l的方程为,圆心M的坐标为,圆M的半径为,圆M的方程为 (2016三卷理)已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点. (I)若在线段上,是的中点,证明; (II)若的面积是的面积的两倍,求中点的轨迹方程. 由题设.设,则,且 . 记过两点的直线为,则的方程为. .....3分 (Ⅰ)由于在线段上,故. 记的斜率为,的斜率为,则, 所以. ......5分 (Ⅱ)设与轴的交点为, 则. 由题设可得,所以(舍去),. 设满足条件的的中点为. 当与轴不垂直时,由可得. 而,所以. 当与轴垂直时,与重合,所以,所求轨迹方程为. ....12分
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 考试专区 > 高考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服