资源描述
九年级上册第二十一章《一元二次方程》整章测试题
一、 选择题(每题3分)
1. (2009山西省太原市)用配方法解方程时,原方程应变形为( )
A. B.
C. D.
2 (2009成都)若关于的一元二次方程有两个不相等的实数根,则的取值范围是( )
A. B。 且 C.。 D。且
3.(2009年潍坊)关于的方程有实数根,则整数的最大值是( )
A.6 B.7 C.8 D.9
4. (2009青海)方程的两个根是等腰三角形的底和腰,则这个三角形的周长为( )
A.12 B.12或15 C.15 D.不能确定
5(2009年烟台市)设是方程的两个实数根,则的值为( )
A.2006 B.2007 C.2008 D.2009
6. (2009江西)为了让江西的山更绿、水更清,2008年省委、省政府提出了确保到2010年实现全省森林覆盖率达到63%的目标,已知2008年我省森林覆盖率为60.05%,设从2008年起我省森林覆盖率的年平均增长率为,则可列方程( )
A. B.
C. D.
7. (2009襄樊市)如图5,在中,于且是一元二次方程的根,则的周长为( )
A. B. C. D.
A
D
C
EC
B
图5
图5
8.(2009青海)在一幅长为80cm,宽为50cm的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图5所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为cm,那么满足的方程是( )
A. B.
C. D.
二、 填空题:(每题3分)
9. (2009重庆綦江)一元二次方程x2=16的解是 .
10. (2009威海)若关于的一元二次方程的一个根是,则另一个根是 .
11. (2009年包头)关于的一元二次方程的两个实数根分别是,且,则的值是 .
12. (2009年甘肃白银)(6分)在实数范围内定义运算“”,其法则为:,则方程(43)的解为 .
13 . (2009年包头)将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值
是 cm2.
14. (2009年兰州)阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则两根与方程系数之间有如下关系:x1+x2=-,x1·x2=.根据该材料填空:已知x1、x2是方程
x2+6x+3=0的两实数根,则+的值为 .
16. (2009年广东省)小明用下面的方法求出方程的解,请你仿照他的方法求出下面另外两个方程的解,并把你的解答过程填写在下面的表格中.
方程
换元法得新方程
解新方程
检验
求原方程的解
令
则
所以
三、 解答题:(52分)
17.解方程:.
18. (2009年鄂州)22、关于x的方程有两个不相等的实数根.
(1)求k的取值范围。
(2)是否存在实数k,使方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,说明理由
19. (2009年益阳市)如图11,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长.
小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.
请按照小萍的思路,探究并解答下列问题:
(1)分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,证明四边形AEGF是正方形;
(2)设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值.
B
C
A
E
G
D
F
图11
20. (2009年衢州)2009年5月17日至21日,甲型H1N1流感在日本迅速蔓延,每天的新增病例和累计确诊病例人数如图所示.
(1) 在5月17日至5月21日这5天中,日本新增甲型H1N1流感病例最多的是哪一天?该天增加了多少人?
(2) 在5月17日至5月21日这5天中,日本平均每天新增加甲型H1N1流感确诊病例多少人?如果接下来的5天中,继续按这个平均数增加,那么到5月26日,日本甲型H1N1流感累计确诊病例将会达到多少人?
(3) 甲型H1N1流感病毒的传染性极强,某地因1人患了甲型H1N1流感没有及时隔离治疗,经过两天传染后共有9人患了甲型H1N1流感,每天传染中平均一个人传染了几个人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型H1N1流感?
累计确诊病例人数
新增病例人数
0
4
21
96
163
193
267
17
75
67
30
74
16
17
18
19
20
21
日本2009年5月16日至5月21日
甲型H1N1流感疫情数据统计图
人数(人)
0
50
100
150
200
250
300
日期
1.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?
2. 参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有多少个队参加比赛?
(如果每两队比才两场呢?)
3.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?
4.一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,这个小组共有多少人?
1.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。现该商品要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?
2.服装柜在销售中发现某品牌童装平均每天可售出20件,每件盈利40元。为了迎接“六一”儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存。经市场调查发现,如果每件童装每降价4元,那么平均每天就可多售出8件。要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少元?
3.西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克。为了促销,该经营户决定降价销售。经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克。另外,每天的房租等固定成本共24元。该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?
4.某商店购进一种商品,进价30元.试销中发现这种商品每天的销售量P(件)与每件的销售价X(元)满足关系:P=100-2X销售量P,若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?
展开阅读全文