收藏 分销(赏)

三角形(复习).doc

上传人:仙人****88 文档编号:6653076 上传时间:2024-12-19 格式:DOC 页数:6 大小:233.50KB 下载积分:10 金币
下载 相关 举报
三角形(复习).doc_第1页
第1页 / 共6页
三角形(复习).doc_第2页
第2页 / 共6页


点击查看更多>>
资源描述
第4章 三角形 ●教学目标 (一)教学知识点 1.判断三角形全等的条件. 2.判断两个直角三角形全等的条件. 3.利用尺规作一个三角形与已知三角形全等. 4.全等图形及其他在生活中的应用. (二)能力训练要求 1.使学生进一步了解图形的全等,能利用全等图形进行简单的图案设计. 2.通过回顾使学生掌握两个三角形全等的条件,能应用三角形的全等解决一些实际问题. 3.在分别给出两角夹边,两边夹角和三边的条件下,能够利用尺规作出三角形. 4.尝试用图形(案)表达自己的想法,发展基本的创新意识和能力. (三)情感与价值观要求 1.通过回顾的活动,进一步发展学生的空间观念,使其积累数学活动经验. 2.在活动过程中,使学生进一步体会数学与现实的密切联系. ●教学重点 三角形全等的条件及其应用. 直角三角形全等的条件及其应用. 尺规作图. ●教学难点 两个三角形全等的应用. 两个直角三角形全等的应用. ●教学方法 分组讨论法 学生在教师的指导下分组讨论、归纳、梳理本章的知识体系,从而使学生顺利掌握本章内容. ●教具准备 幻灯片 ●教学过程 Ⅰ.基础测评(学生根据问题回答) (一)三角形三边关系和角的关系 1.三角形任意两边之和   第三边.  2.三角形任意两边之差   第三边.  3.三角形三个内角和等于   .  4.直角三角形的两个锐角   .  5.三角形具有   .  (二)三角形的角平分线、中线和高 1.三角形的角平分线:三角形一个内角的角平分线和这个角的对边相交,这个角的   和对边交点之间的线段叫做三角形中这个角的角平分线,简称三角形的角平分线.三角形的三条角平分线在三角形的   交于一点.  2.三角形的中线:连接三角形一个   和它对边   的线段,叫做三 角形这个边上的中线,简称三角形的中线.三角形的三条中线交于三角形    一点,这一点被称为三角形的   .  3.三角形的高:从三角形的一个   向它的对边所在直线作   ,顶点和   之间的线段叫做三角形的高线,简称三角形的高.三角形的三条高所在的直线交于一点.  4.三角形的角平分线、中线和高都是   .  (三)全等三角形 1.全等三角形的定义:能够   的两个三角形或形状相同、大小相等的两个三角形.  2.全等三角形性质:全等三角形的对应边    ,对应角   .  (四)三角形全等的条件 1.三组对应边分别相等的两个三角形全等(简称“   ”或“边边边”).  2.有两边及其夹角对应相等的两个三角形全等(简称“   ”或“边角边”).  3.有两角及其夹边对应相等的两个三角形全等(简称“   ”或“角边角”).  4.有两角及其一角的对边对应相等的两个三角形全等(简称“   ”或“角角边”).  (五)用尺规作三角形 用尺规作三角形的依据是三角形全等的判定. Ⅱ.题组训练(学生独立完成,老师请同学回答并讲解) (一)三角形三边关系和角的关系 1.一个三角形的两边长分别是2和7,另一边长a为偶数,且2<a<8,则这个三角形的周长为   .  2.已知△ABC的周长为18 cm,AB边比AC边短2 cm,BC边是AC边的一半,则AB=     cm,BC=    cm,CA=    cm.  3.如图,△ABC中,∠ABC=28°,∠C=32°,BD⊥AC,垂足为D,AE平分∠BAC交BD延长线于点F.求∠BFE和∠CAF的度数. (二)三角形的角平分线、中线和高 1.三角形的重心是三角形的(   ) (A)三条中线的交点 (B)三条角平分线的交点 (C)三边垂直平分线的交点 (D)三条高所在直线的交点 2.如图,CD,CE,CF分别是△ABC的中线、角平分线、高,那么下列结论错误的是(   ) (A)AD=DB (B)∠ACE=∠ECB (C)∠AFC=∠BFC=90° (D)∠ECF=∠BCF 3.如图,△ABC中,AD是高,AE,BF是角平分线,它们相交于点O,∠CAB=50°, ∠C=60°,求∠DAE和∠BOA的度数. (三)全等三角形的性质与判定 1.如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是(   ) (A)5 (B)4 (C)3 (D)2 2.如图,四边形ABCD中,∠1=∠2,请你补充一个条件   ,使△ABC≌△CDA.  3.如图,要测量一条小河的宽度AB的长,可以在小河的岸边作AB的垂线MN,然后在MN上取两点C,D,使BC=CD,再画出MN的垂线DE,并使点E与点A,C在一条直线上,这时测得DE的长就是AB的长,其中用到的数学原理是:  .  .  4.如图,方格中有一个△ABC,请你在方格内,画出满足条件A1B1=AB,B1C1=BC, ∠A1=∠A的△A1B1C1,并判断△A1B1C1与△ABC是否一定全等. 5.如图,点F,B,E,C在同一直线上,并且BF=CE,∠ABC=∠DEF.能否由上面的已知条件证明△ABC≌△DEF?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使△ABC≌△DEF,并给出说明. 提供的三个条件是: ① AB=DE;②AC=DF;③AC∥DF. Ⅲ.课时小结 这节课我们主要回顾了三角形全等的条件及其应用. 大家在判定两个三角形全等或应用全等三角形性质时,应注意找到它们的对应元素;再就是应学会分析. Ⅳ.课后作业 (一)课本复习题B组1~4 C组1、2. (二)用自己的语言梳理本章内容,即:写一份小结. Ⅵ.活动与探究 图5-189 如图5-189,△ABC中,AF是∠EAC的平分线,D是这条平分线上任意一点,试确定AB+AC和BD+DC之间的大小关系,并说明理由. 分析:让学生讨论、分析,知道要探求线段大小关系往往把这些线段归结到同一个三角形中,利用三角形三条边的关系求得.这个题可根据角平分线条件构造全等三角形.即在射线AE上截取AC′=AC,连接C′D,可得△AC′D≌△ACD(SAS)从而得:C′D=CD.于是就把这四条线段放入一个三角形中,它们的大小即可求得. 结果:AB+AC小于BD+DC. 图5-190 如图所示5-190:在射线AE上截取AC′=AC,连接C′D. AF是∠EAC的平分线 ●板书设计 回顾与思考(二) 一、问题串 二、知识框架图 三、课堂练习 四、课时小结
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 小学其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服