资源描述
第六章 统计与概率
第2课时 概率
教学目标
【考试目标】
1、了解概率的意义,会运用列举法(包括列表、画树状图)计算简单事件发生的概率;
2、知道大量重复试验时频率可作为事件发生概率的估计值;
【教学重点】
1、了解事件的分类,知道什么是随机事件;
2、掌握概率的概念;
3、学会计算概率,掌握计算概率的方法;
4、了解概率的应用。
教学过程
一、课 前 预 习
1.(2015•葫芦岛)下列事件属于必然事件的是( )
A.蒙上眼睛射击正中靶心
B.买一张彩票一定中奖
C.打开电视机,电视正在播放新闻联播
D.月球绕着地球转
2.(2015•梧州)在一个不透明的袋子中,装有红球、黄球、篮球、白球各1个,这些球除颜色外无其他差别,从袋中随机取出一个球,取出红球的概率为( )
A、 B、 C、 D、
3.(2015•钦州)在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是 ,则n的值为( )
A.3 B.5 C.8 D.10
4.(2015•湘西州)掷一枚质地均匀的骰子,六个面上分别标有1,2,3,4,5,6;则出现点数为1的概率为 .
5.(2015•辽阳)某校组织“书香校园”读书活动,某班图书角现有文学书18本,科普书9本,人物传记12本,军事书6本,小明随机抽取一本,恰好是人物传记的概率是 .
二、考 点 梳 理
1.事件的分类:生活中的事件分为 事件和 事件,确定事件又分 事件和 事件.
2.概率:表示一个事件发生的 的数叫做该事件的概率.
3.概率的性质
(1)必然事件发生的概率为 ,即P(必然事件)=1;(2)不可能事件发生的概率为 ,即P(不可能事件)=0; (3)如果A为不确定事件,那么 ;(4)P(A)的范围是 .
4.概率的计算方法
(1)一步事件的概率:(k表示关注结果的次数,n表示所有可能出现结果的次数).
(2)两步事件的概率:①计算简单事件发生的概率的方法有 (包括列表,画树状图);②通过大量 时,频率可视为事件发生概率的估计值.
三、课 堂 精 讲
1.(2015•宁德)下列事件中,必然事件是( )
A.掷一枚硬币,正面朝上
B.任意三条线段可以组成一个三角形
C.投掷一枚质地均匀的骰子,掷得的点数是奇数
D.抛出的篮球会下落
2.下列事件是随机事件的是( )
A.购买一张福利彩票中奖
B.400人中至少有两人的生日在同一天
C.有一名运动员奔跑的速度是30米/秒
D.在一个仅装着白球和黑球的袋中摸球,摸出红球
3.(2015佛山)一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是( )
A、 B、 C、 D、
4.(2015•赤峰)在分别写有﹣1,0,1,2的四张卡片中随机抽取一张,所抽取的数字平方后等于1的概率为 .
5.(2015•贺州)在甲口袋中有三张完全相同的卡片,分别标有﹣1,1,2,乙口袋中有完全相同的卡片,分别标有﹣2,3,4,从这两个口袋中各随机取出一张卡片.
(1)用树状图或列表表示所有可能出现的结果;
(2)求两次取出卡片的数字之积为正数的概率.
6.将分别标有数字1、2、3的3个质地和大小完全相同的小球装在一个不透明的口袋中.
(1)若从口袋中随机摸出一个球,其标号为奇数的概率为多少?
(2)若从口袋中随机摸出一个球,放回口袋中搅匀后再随机摸出一个球,试求所摸出的两个球上数字之和小于4的概率(用树状图或列表法求解).
7.(2015茂名)在一个不透明的袋中装有2个黄球,3个黑球和5个红球,它们除颜色外其他都相同.
(1)将袋中的球摇均匀后,求从袋中随机摸出一个球是黄球的概率;
(2)现在再将若干个红球放入袋中,与原来的10个球均匀地混合在一起,使从袋中随机摸出一个球是红球的概率是 ,请求出后来放入袋中的红球的个数.
8.(2015广州)4件同型号的产品中,有1件不合格品和3件合格品.
(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;
(2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;
(3)在这4件产品中加入件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出的值大约是多少?
9.(2015•朝阳)在学习概率的课堂上,老师提出问题:只有一张电影票,小明和小刚想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小明和小刚都公平的方案.
甲同学的方案:将红桃2、3、4、5四张牌背面向上,小明先抽一张,小刚从剩下的三张牌中抽一张,若两张牌上的数字之和是奇数,则小明看电影,否则小刚看电影.
(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;
(2)乙同学将甲的方案修改为只用红桃2、3、4三张牌,抽取方式及规则不变,乙的方案公平吗?(只回答,不说明理由)
四、广 东 中 考
10.(2014梅州)下列事件中是必然事件的是( )
A.明天太阳从西边升起
B.篮球队员在罚球线上投篮一次,未投中
C.实心铁球投入水中会沉入水底
D.抛出一枚硬币,落地后正面朝上
11.(2014广东)一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( )
A. B. C. D.
12.(2014深圳)袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,所抽取的两个球数字之和大于6的概率是( )
A. B. C. D.
13. (2014珠海)桶里原有质地均匀、形状大小完全一样的6个红球和4个白球,小红不慎遗失了其中2个红球,现在从桶里随机摸出一个球,则摸到白球的概率为 .
14. (2012年广东省) 有三张正面分别写有数字—2,—1,1的卡片,它们的背面完全相同,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值。放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y)。
(1)用树状图或列表法表示(x,y)所有可能出现的结果;
(2)求使分式有意义的(x,y)出现的概率;
(3)化简分式;并求使分式的值为整数的(x,y)出现的概率。
15、(2015年广东省)老师和小明同学玩数学游戏,老师取出一个不透明的口袋,口袋中装有三张分别标有数字1,2,3的 卡片,卡片除数字个其余都相同,老师要求小明同学两次随机抽取一张卡片,并计算两次抽到卡片上 的数字之积是奇数的概率,于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果,题 20图是小明同学所画的正确树状图的一部分.
(1) 补全小明同学所画的树状图;
(2) 求小明同学两次抽到卡片上的数字之积是奇数的概率.
五、师生互动,总结知识
先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.
课后作业
布置作业:同步导练
教学反思
本课时内容单独理解并不是很难,但是要熟练应用,还要结合其他知识熟练掌握很难,大家要多多练习,尽可能熟练的掌握本课时的知识.
5
展开阅读全文