1、长长安一中、高新一中、交大附中、师大附中、西安中学高2012届第三次模拟考试数学(文)试题注意事项: (1)本试卷分第I卷(选择题)和第II卷(非选择题)两部分,总分150分,考试时间120分钟(2)答题前,考生须将自己的学校、班级、姓名、学号填写在本试卷指定的位置上(3)选择题的每小题选出答案后,用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上(4)非选择题必须按照题号顺序在答题卡上各题目的答题区域内作答超出答题区域或在其他题的答题区域内书写的答案无效;在草稿纸、本试题卷上答题无效(5)考试结束,将本试题卷和答题卡一并交回第一卷(选择题
2、共50分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分)。1命题“存在”的否定是 ( )A 存在 B不存在C 对任意 D对任意 2已知与之间的几组数据如下表:X0123Y1357 则与的线性回归方程必过 ( ) A B C D 3已知若是的充分不必要条件,则实数的取值范围是 () 4一个蜂巢里有1只蜜蜂,第一天,它飞出去带回了5个伙伴;第二天,6只蜜蜂飞出去各自带回了5个伙伴,如果这个过程继续下去,那么第6天所有蜜蜂归巢后,蜂巢中共有蜜蜂 ( ) 只 只 只 只 5函数,则此函数图像在点处的切线的倾斜角为() 6已知的三个顶点A、B、C
3、及所在平面内一点P满足,则点P与的关系 ( )AP在内部 B P在外部 CP在边所在直线上 D P在的边一个三等分点上 7已知集合,集合,则 集合A与B的关系是 ( )A B C D 8若变量满足约束条件,则的最小值为 ( ) A2 B3 C4 D59已知函数 若存在,则实数的取值范围为 ( ) A B C D10已知点、,是直线上任意一点,以A、B为焦点的椭圆过点P记椭圆离心率关于的函数为,那么下列结论正确的是 ( ) A与一一对应 B函数无最小值,有最大值C函数是增函数 D函数有最小值,无最大值二、填空题 (共5小题, 每题5分, 计25分. 将正确的答案填在题后的横线上) 11观察下列式
4、子:,由此可归纳出的一般结论是 12阅读右面的程序,当分别输入时,输出的值 13从2012名学生中选50名学生参加中学生作文大赛,若采用下面的方法选取:先用简单随机抽样的方法从2012人中剔除12人,剩下的再按系统抽样的抽取,则每人入选的概率 (填相等或不相等) 14 已知某几何体的三视图如左图所示,根据图中的尺寸(单位:)则此几何体的体积是 15(考生注意:请在下列三题中任选一题作答,如多做,则按所做的第一题评分) A 对于实数,若,则的最大值 圆(为参数)的极坐标方程为如图,切圆于点,割线经过圆心,则 三、解答题 (共6小题,计75分. 需写清详细解答步骤或证明过程) 16(本小题12分)
5、已知四个正实数前三个成等差数列,后三个成等比数列,第一个与第三个的和为8,第二个与第四个的积为36 () 求此四数; ()若前三数为等差数列的前三项,后三数为等比数列的前三项,令,求数列的前项和17(本小题12分)如图,已知的半径是,点在直径AB的延长线上,点P是上半圆上的动点,以为边作等边三角形,且点D与圆心分别在的两侧() 若,试将四边形的面积表示成的函数; () 求四边形的面积的最大值18(本小题12分)袋子中放有大小和形状相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2 的小球个,已知从袋子随机抽取1个小球,取到标号为2的小球的概率是()求的值; ()从袋子中不放回
6、地随机抽取2个球,记第一次取出的小球标号为,第二次取出的小球标号为 记“”为事件A,求事件A的概率; 在区间内任取2个实数,求事件“恒成立”的概率 19(本小题12分)如图,在四棱锥中,底面为平行四边形,底面,E在棱上, () 当为何值时,; () 若时,求点到面的距离20(本小题13分)设动点 到定点的距离比到轴的距离大记点的轨迹为曲线C()求点的轨迹方程; ()设圆M过,且圆心M在P的轨迹上,是圆在轴的截得的弦,当运动时弦长是否为定值?说明理由; ()过做互相垂直的两直线交曲线C于G、H、R、S,求四边形面积的最小值21(本小题14分)已知,函数(其中为自然对数的底数) ()求函数在区间上
7、的最小值; ()设,当时,若对任意,存在,使得,求实数的取值范围长安一中、高新一中、交大附中、师大附中、西安中学高2012届第三次模拟考试数学(文)答案一、 选择题:DCABD DBDDB二、 填空题11. 12. 13.相等 14. 15.A 、6 B、 C、 三、 解答题16解:(1)设此四数为 由题意知, 所求四数为2,4,6,9 (2) 利用错位相减求和得17解:(1)在中,由余弦定理,得 = = (2)当,即时,答四边形面积的最大值为18解:(1) (2) 记“恒成立”为事件B,则事件B等价于“恒成立, 可以看成平面中的点,则全部结果所构成的区域为,而事件B构成的区域 19解:(1)在中, 连结交于O,过O作交于E,则,计算的此时 (2)计算得20解:(1) 由题意知,所求动点为以为焦点,直线为准线的抛物线,方程为; (2) 设圆心,半径 圆的方程为 令得 即弦长为定值;(3)设过F的直线方程为 , 由得 由韦达定理得 同理得 四边形的面积. 21解:(1) 若时, 函数在区间是减函数 ; 时 函数在区间是减函数,是增函数 ;综上所述 略(2)由(1)可知,时,函数在的最小值为0, 当时, 不成立 当时,恒成立当时, 此时综上知,满足条件的实数的取值范围7用心 爱心 专心