1、3.3 几何概型授课时间第 周 星期 第 节课型新授课主备课人学习目标1初步体会模拟方法在概率方面的应用;2.理解几何概型的定义及其特点,会用公式计算简单的几何概型问题。重点难点重点:借助模拟方法来估计某些事件发生的概率;几何概型的概念及应用,体会随机模拟中的统计思想:用样本估计总体难点:设计和操作一些模拟试验,对从试验中得出的数据进行统计、分析;应用随机数解决各种实际问题。学习过程与方法自主学习1.模拟方法:通常借助_来估计某些随机事件发生的概率。用模拟方法可以在短时间内完成大量的重复试验,对于某些无法确切知道概率的问题,模拟方法能帮助我们得到其概率的近似值。 2.几何概型:(1)向平面上有
2、限区域(集合)G内随机地投掷点M,若点M落在 的概率与G1的 成正比,而与G的 、 无关,即P(点M落在G1) = ,则称这种模型为几何概型。(2)几何概型中G也可以是 或 的有限区域,相应的概率是 或 。探索新知:1.几何概型中事件A的概率是否与构成事件A的区域形状有关?2在几何概型中,如果A为随机事件,若P(A) = 0,则A一定为不可能事件吗?3.阅读p156 “问题提出”,你的结论是什么?精讲互动例1在相距3m的两杆之间扯上一铁丝,小明洗完衣服后,将衣服挂在铁丝上晾晒,则所挂衣服与两杆的距离都不小于1m的概率有多大? 例2(选讲)在区间-1,1上任取两个数,则 (1)求这两个数的平方和不大于1的概率; (2)求这两个数的差的绝对值不大于1的概率。达标训练1. 课本p157 练习1 2 2. 教辅资料作业布置习题3-3 1,2学习小结/教学反思2